为了对某三增压器相继增压柴油机切换策略进行研究,可以基于GT-POWER建立仿真模型,分别在急加速和稳态工况下进行STC(Sequential Turbo Charging)切换,并由仿真图像分析切换后的运行稳定性及空气阀延迟时间对柴油机性能的影响。研究表明,该STC切换策略下柴油机在急加速工况下响应迅速,运行参数稳定且处于合理范围;同时,空气阀开启延迟时间会显著影响柴油机稳态运行性能,在1TC~2TC以及2TC~3TC的切换过程中,当空气阀延迟2 s开启,在切换点有效燃油消耗率相较于延迟0 s时分别增大了6.42%和4.59%;而延迟1 s开启时,在切换点分别增大了2.12%和1.7%,而值得注意的是,0 s延迟开启会影响柴油机运行的稳定性。因此,可知当延迟开启时间在0~1 s时,能够实现最佳TC切换,并以此为同类柴油机提供切换过程案例分析。
This study investigates the switching strategy of a triple-turbocharger sequential turbocharging system for diesel engines through GT-POWER simulations, evaluating performance under both transient acceleration and steady-state conditions with particular focus on operational stability and air valve delay timing effects. The results demonstrate that the proposed strategy ensures rapid response while maintaining stable operating parameters during acceleration, with air valve delay timing significantly impacting steady-state performance - specifically, during first to second turbocharger stage transitions, 2-second and 1-second delays increase effective fuel consumption by 6.42% and 2.12% respectively compared to immediate opening, while second to third stage transitions show corresponding increases of 4.59% and 1.7%, with immediate opening adversely affecting engine stability. These findings conclusively establish that optimal turbocharger switching performance is achieved within the 0-1 second delay window, providing valuable insights for similar diesel engine applications.
2026,48(1): 120-126 收稿日期:2025-4-15
DOI:10.3404/j.issn.1672-7649.2026.01.017
分类号:U664.121
作者简介:刘昊喆(2001-),男,硕士研究生,研究方向为涡轮增压系统技术
参考文献:
[1] 师文洁. 基于电辅助涡轮增压器调控的柴油机能效优化研究[D]. 天津: 天津大学, 2017.
[2] 张哲, 邓康耀. 相继涡轮增压柴油机推进特性的稳态及瞬态试验研究[J]. 内燃机工程, 2011, 32(6): 68-73.
ZHANG Z, DENG K Y. Experimental research on steady and transient performances of propulsion characteristics of diesel engine with sequential turbocharging system[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(6): 68-73.
[3] 李成, 马超, 陈秉智, 等. 相继增压系统对改善船用直列八缸发动机性能的试验研究[J]. 船舶工程, 2020, 42(8): 64-68+102.
LI C, MA C, CHEN B Z, et al. Test research of sequential turbocharging system on improving marine eight cylinder engine performance[J]. Ship Engineering, 2020, 42(8): 64-68+102.
[4] 顾彬腾, 李先南, 石磊, 等. 高功率密度柴油机两级相继增压控制策略[J]. 船舶工程, 2022, 44(1): 64-68,95.
GU B T, LI X N, SHI L, et al. Strategy of two-stage sequential turbocharging for high power density diesel engine[J]. Ship Engineering, 2022, 44(1): 64-68,95.
[5] 夏清梁. 相继增压系统对某游艇发动机的性能影响研究[D]. 厦门: 集美大学, 2018.
[6] 李京, 白洪林, 李耀宗, 等. 大功率柴油机相继增压技术研究综述[J]. 车用发动机, 2017(4): 73-77+83.
LI J, BAI H L, LI Y Z, et al. Review of sequential turbocharging technology for high power diesel engine[J]. Vehicle Engine, 2017(4): 73-77+83.
[7] GULMAR S, HERMANN B, VOLKER W. Utilizing multiple injections for optimized performance and exhaust emissions with the MTU series 2000 common rail marine engines[C]//CIMAC World Congress on Combustion Engines. 25th CIMAC World Congress, Volume 1 of 2. Vienna, Austria: Curran Associates, Inc. , 2007.
[8] DZIEDZIK P, DANILECKI K. The concept of determining the control function of turbochargers in sequential turbo-charging[C]//Scientific Conference on Automotive Vehicles and Combustion Engines. Scientific Conference on Automotive Vehicles and Combustion Engines: KONMOT 2018 : Development of Vehicles - Construction, Operation, Ecology and Safety : Krakow, Poland, 13-14 September 2018, Part 2 of 2. Krakow: Institute of Physics, 2018.
[9] STERR M, SLAVIC S, SANDOR I, et al. Thermodynamic advantages and challenges of a parallel sequential twin boosting system on a high efficiency 1.0 I CNG engine [C]//International Conference on Turbochargers and Turbocharging. 13th International Conference on Turbochargers and Turbocharging 2018: 16-17 May 2018, London, United Kingdom. London: Curran Associates, Inc. , 2018: 517-530.
[10] 李昕光, 王银燕, 何清林. 柴油机相继增压系统瞬态切换策略试验研究[J]. 哈尔滨工程大学学报, 2013, 34(8): 972-977.
LI X G, WANG Y Y, HE Q L. Investigation on transient switching strategy of diesel engine sequential turbocharging system[J]. Journal of Harbin Engineering University, 2013, 34(8): 972-977.
[11] 周文杰, 程江华, 石磊, 等. 柴油机相继增压切换过程阀门耦合控制研究[J]. 内燃机工程, 2020, 41(5): 70-76+83.
ZHOU W J, CHENG J H, SHI L, et al. Research on valves coupling control in diesel engine sequential supercharging switching process[J]. Chinese Internal Combustion Engine Engineering, 2020, 41(5): 70-76+83.
[12] 付永刚, 楚仕超, 苗翠婷, 等. 船用柴油机相继增压器切换工况选择及控制策略研究[J]. 内燃机, 2022, 38(5): 1-8.
FU Y G, CHU S C, MIAO C T, et al. Research on the selection of switching condition and control strategy of sequential turbocharging system for marine diesel engine[J]. Internal Combustion Engines, 2022, 38(5): 1-8.
[13] 王银燕, 何清林, 王贺春, 等. 柴油机采用4台增压器相继增压性能的试验研究[J]. 内燃机工程, 2012, 33(1): 6-10+17.
WANG Y Y, HE Q L, WANG H C, et al. Experimental research on performance of four-turbocharger sequential turbocharged diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2012, 33(1): 6-10+17.
[14] 孙占款. 柴油机相继增压系统切换过程性能仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[15] 王振彪, 田伟, 邓春龙, 等. 某大功率柴油机顺序增压系统切换过程试验研究[J]. 车用发动机, 2009(5): 80-84.
WANG Z B, TIAN W, DENG C L, et al. Experimental research on switching process of sequential turbocharging system for a high power diesel engine[J]. Vehicle Engine, 2009(5): 80-84.