在实际运行过程中,针对某型燃气轮机出现的引射空气不足问题,为提升引射冷却空气量,开展了箱装体引射系统及排气系统相关数值计算及试验研究。研究表明,随着燃气轮机排气蜗壳出口面积的减小,冷却空气流量逐渐增加,排气蜗壳出口排气总压逐渐升高、排气管及喷管段阻力损失逐渐增大,当喷口直径缩小为1250 mm时,可满足引射空气量大于8.5 kg/s、排气系统阻力在5000 Pa以内的要求。排气蜗壳与排气管对中情况对引射和排气系统影响不明显,引射空气流量和排气系统阻力基本没有变化。调整喷管段安装角度,引射空气流量和排气系统阻力损失基本没有变化;增大喷管段出口直径,由于排气阻力降低、流速增大,该措施可提高引射空气流量、降低排气阻力阻力损失。
In view of the problem of insufficient suction air in a certain type of gas turbine during actual operation, this paper carries out numerical calculation and research on the suction system and exhaust system of the box-type suction system in order to improve the suction cooling air flow. The study shows that as the outlet area of gas turbine exhaust volute decreases, the cooling air flow gradually increases, the total pressure of the exhaust gas at the outlet of the exhaust volute gradually increases, and pressure loss of the exhaust pipe and nozzle section gradually increases. When the nozzle diameter is reduced to 1250mm, it can meet the requirements of suction flow greater than 8.5kg/s and exhaust system resistance within 5000pa. The alignment of the exhaust volute and exhaust pipe has no effect on the suction and exhaust system, and the suction air flow and the resistance of the exhaust system basically do not change. When the installation angle of the nozzle section adjusted, the suction air flow and the pressure loss of the exhaust system basically do not change; when the outlet diameter of the nozzle section is increased, the measure can the suction air flow and reduce the exhaust resistance loss due to the reduction of exhaust resistance and the increase of flow velocity.
2026,48(1): 127-132 收稿日期:2025-4-24
DOI:10.3404/j.issn.1672-7649.2026.01.018
分类号:U664.81;TK477
作者简介:魏昌淼(1988-),男,硕士,高级工程师,研究方向为燃气轮机科研试验及故障诊断
参考文献:
[1] 李东明, 王林, 闻雪友, 等. 船用燃机排气引射器的数值模拟及试验研究[J]. 热能动力工程, 2002, 17(99): 226-230.
LI D M, WANG L, WEN X Y, et al. Numerical simulation and experimental study of the exhaust gas eductor of a marine gas turbine[J]. Journal of Engineering for Thermal Energy and Power, 2002, 17(99): 226-230.
[2] 王小玲. 高速舰用燃气轮机超短型排气引射装置的研究与应用[J]. 船舶, 2005(5): 35-40.
WANG X L. Study and application of ultra short exhaust induction equipment for high speed marine gas turbine[J]. Ship & Boat, 2005(5): 35-40.
[3] 柯峰. 开口后台阶引射及窄宽度二维台阶绕流的湍流非定常特性实验研究[D]. 上海: 上海交通大学. 2007.
[4] 何基弘, 姚思楠, 黄冰阳, 等. 基于 NSGA-II 的燃气轮机排气引射装置多目标优化设计 [J]. 中国舰船研究, 2022, 17(增刊 1): 99–108.
HE J H, YAO S N, HUANG B Y, et al. Multi-objective optimization design of gas turbine exhaust ejection device basedon NSGA-II algorithm[J]. Chinese Journal of Ship Research, 2022, 17(S1): 99–108.
[5] 史振, 张善科, 原文祺, 等. 船用排气引射装置计算及优化改进[J]. 舰船科学技术, 2021, 43(7): 88-92.
SHI Z, ZHANG S K, YUAN W Q, et al. Calculation and improvement of a marine gasturbine exhaust injector[J]. Ship Science and Technology, 2021, 43(7): 88-92.
[6] 孙起超. 突片型船用燃气轮机排气引射器性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[7] CHEN Q, BIRK A M. Analytical experimental study of an exhaust ejector with entraining diffuser[C]//ASME Turbo Expo 2005: Power for Land, Sea and Air, 2005.
[8] MAQSOOD A, BIRK A M. Effect of entraining diffuser on the performance of bent exhaust ejectors[C]//ASME Turbo Expo 2010: Power for Land, Sea and Air, 2010.