针对浅海掩埋式光纤水听器阵列位置校准的工程需求实际,提出一种融合时延估计和遗传优化算法的三辅助源阵列位置有源校准方法。首先,利用位于阵列近场位置已知、分时工作的双辅助声源发射宽频带信号,借助经典时延估计获取阵列位置初始值;其次,利用位于阵列远场位置已知的单一辅助声源发射单频窄带信号,借助基于遗传算法和MUSIC算法的阵列位置寻优方法,通过全局最小化适应度函数迭代寻优,得到更为准确的阵列位置。仿真和海试结果表明,本文提出的方法较好克服了浅海环境单一阵列远场校准面临的水声信道强多途干扰及远距离声传播衰减导致的接收信噪比不足等问题,具有良好的校准精度、环境适应性和广阔的应用前景。
In response to the practical engineering requirements for position calibration of shallow-sea buried fiber-optic hydrophone arrays, this study proposes an active calibration method utilizing three auxiliary sources, which integrates time delay estimation and genetic optimization algorithms. Initially, broadband signals transmitted by dual auxiliary acoustic sources with known near-field positions operating in time-division multiplexing mode are employed to derive initial array position estimates through classical time delay estimation techniques. Subsequently, a single auxiliary acoustic source with known far-field position transmits narrowband single-frequency signals. The array position is further refined via an optimization-based approach combining genetic algorithm and MUSIC algorithm, achieving enhanced accuracy through iterative global minimization of a fitness function. Simulation and sea trial results demonstrate that the proposed methodology effectively mitigates challenges inherent in conventional far-field single-source calibration schemes under shallow-water environments, including severe multipath interference in underwater acoustic channels and insufficient received signal-to-noise ratio (SNR) caused by long-range acoustic propagation attenuation. The method exhibits superior calibration accuracy, robust environmental adaptability, and promising application prospects in practical scenarios.
2026,48(1): 141-146 收稿日期:2025-3-27
DOI:10.3404/j.issn.1672-7649.2026.01.020
分类号:U66;TB566
作者简介:马嘉君(1998-),女,硕士,研究方向为水声信号处理
参考文献:
[1] BRUNO F A, JANNEH M, GUNDA A, et al. Fiber optic hydrophones for towed array [J]. Optics and Lasers in Engineering, 2023, 160: 107269.
[2] CRANCH G A, NASH P J, KIRKENDALL C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19-30.
[3] 邱秀文, 石文峰, 孙春艳, 等. 大孔径光纤拖曳线列阵阵形估计对目标侧向精度的影响[J]. 舰船电子工程, 2016, 36(11): 44-48.
QIU X W, SHI W F, SUN C Y, et al. Effects of large-aperture fiber optic towed array shape estimation on target bearing accuracy[J]. Ship Electronic Engineering, 2016, 36(11): 44-48.
[4] CRANCH G A, CRICKMORE R, KIRKENDALL C K. Acoustic performance of a large-scale, seabed fiber-optic hydrophone arrays[J]. Acoustical Society of America, 2004, 3(1): 2848-2858.
[5] 梁国龙, 刘凯, 嵇建飞, 等. 一种用于水平柔性长线水听器阵阵形估计的新算法[J]. 南京理工大学学报, 2011, 35(3): 321-327.
LIANG G L, LIU K, JI J F, et al. A novel algorithm for array shape estimation of horizontal flexible long-line hydrophone array[J]. Journal of Nanjing University of Science and Technology, 2011, 35(3): 321-327.
[6] 李光远, 侯朋, 程广福. 基于粒子群算法的水下多元线列阵阵形有源校正方法[J]. 舰船科学技术, 2017, 39(8): 151-155.
LI G Y, HOU P, CHENG G F. Array shape calibration of underwater line array with multiple sources based on particle swarm optimization[J]. Ship Science and Technology, 2017, 39(8): 151-155.
[7] 吕冰, 葛辉良. 海底布放阵形位置的精确测量方法[J]. 舰船电子工程, 2013, 35(9): 155-157.
LYU B, GE H L. Accurate measurement method for deployed array shape position on the seabed[J]. Ship Electronic Engineering, 2013, 35(9): 155-157.
[8] WILLERTON M. Array auto-calibration [D]. London: Imperial College London, 2013.
[9] CHUNG P J, WANG S. Array self-calibration using sage algorithm [J]. IEEE Trans. Sensor Array and Multichannel Signal Processing Workshop, 2008, 7: 165-169.
[10] 汪俊, 吴立新, JIM L. 一种基于时延估计的双辅助声源阵形校准方法[J]. 声学学报, 2007, 32(2): 165-170.
WANG J, WU L X, LYNCH J. A method of array shape calibration based on time delay estimation using two auxiliary sources[J]. Acta Acustica, 2007, 32(2): 165-170.
[11] PARK H, LEE C, KANG H, et al. Generalization of the subspace-based array shape estimation [J]. IEEE Journal of Ocean Engineering, 2004, 29(3): 847-856.
[12] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法[J]. 物理学报, 2015, 64(2): 1-10.
WANG Y, ZOU N, LIANG G L. Active near-field calibration method for hydrophone array position in strong multipath environment[J]. Acta Physica Sinica, 2015, 64(2): 1-10.
[13] 田坦. 水下定位与导航技术[M]. 北京: 国防工业出版社, 2007.
[14] CHEN J, BENESTY J, HUANG Y. Performance of GCC- and AMDF-based time-delay estimation in practical reverberation environments [J]. EURASIP Journal on Applied Signal Processing, 2005, 1: 25-36.
[15] 雷英杰, 张善文, 李续武, 等. Matlab遗传算法工具箱及应用[M]. 西安: 西安电子科技大学出版社, 2005.
[16] 段晶晶, 李钢虎. 基于遗传算法的矢量水听器相位误差校正[J]. 声学技术, 2012, 31(2): 174-178.
DUAN J J, LI G H. Phase error calibration of vector hydrophone based on genetic algorithm[J]. Technical Acoustics, 2012, 31(2): 174-178.
[17] XU Z, LU S. Mutli-objective optimization of sensor array using genetic algorithm[J]. Sensors and Actuators B: Chemical, 2021, 160: 278-286.