在现代海洋军事作战中,实现无人水下航行器(Unmanned Underwater Vehicle,UUV)集群对目标的快速、高效打击至关重要。本文提出一种新型的饱和式打击任务分配策略。该策略首先根据目标UUV聚集程度进行区域划分,然后根据区域价值和我方UUV打击能力合理分配任务;采用哈里斯鹰算法解决任务分配问题,引入Logistic混沌映射和差分进化机制进一步提升搜索效率和任务分配精度;在行为规划上,通过结合最优匹配算法与贝塞尔曲线的动态路径控制,确保打击过程中的准确性和灵活性。仿真结果表明,该策略表现出较高的打击效率和实用性,为UUV集群在复杂环境下的打击任务提供了有效的解决方案。
In modern naval warfare, achieving rapid and efficient strikes against targets using unmanned underwater vehicles (UUVs) is of critical importance. Motivated by this, a novel saturation-based strike mission allocation strategy is proposed. This strategy first partitions the operational area based on the spatial distribution of target UUVs and then allocates missions by considering both the regional value and the strike capabilities of friendly UUVs. The Harris hawks optimization algorithm is employed to solve the task allocation problem, with Logistic chaotic mapping and differential evolution mechanisms incorporated to enhance search efficiency and allocation accuracy. In terms of behavior planning, an optimal matching algorithm is integrated with Bezier curve-based dynamic path control to ensure precision and adaptability during the strike process. Simulation results demonstrate that the proposed strategy exhibits high strike efficiency and practical applicability, offering an effective solution for UUVs strike missions in complex environments.
2026,48(1): 147-153 收稿日期:2025-4-15
DOI:10.3404/j.issn.1672-7649.2026.01.021
分类号:U674.941;TP18
基金项目:国家自然科学基金资助项目(52271302);国家重点研发计划资助项目(2021YFC2803003)
作者简介:刘锋(1985-),男,博士,高级工程师,研究方向为无人水下航行器自主决策、集群控制
参考文献:
[1] 李厚全, 刘宏杰, 毛科建, 等. 水下无人航行器隐蔽导航方法研究[J]. 舰船科学技术, 2022, 44(12): 83-87.
LI H Q, LIU H J, MAO K J, et al. The research of method about secret navigation underwater of UUV[J]. Ship Science and technology, 2022, 44(12): 83-87.
[2] 刘佳, 郎继超. 深海着陆器无动力下潜技术发展现状[J]. 舰船科学技术, 2022, 44(24): 107-113.
LIU J, LANG J C. Development status of unpowered diving motion of deep-sea lander[J]. Ship Science and technology, 2022, 44(24): 107-113.
[3] YAN Z, LI Y. Data collection optimization of ocean observation network based on AUV path planning and communication[J]. Ocean Engineering, 2023, 282: 114912.
[4] 杨芳, 陈彦勇, 张云佳, 等. 基于改进灰狼算法的UUV集群任务分配研究[J]. 舰船科学技术, 2022, 44(22): 69-75.
YANG F, CHEN Y Y, ZHANG Y J, et al. Research on task allocation of multi-UUV based on improved grey wolf optimizer[J]. Ship Science and technology, 2022, 44(22): 69-75.
[5] WU X, GAO Z, YUAN S, et al. A dynamic task allocation algorithm for heterogeneous UUV swarms[J]. Sensors, 2022, 22(6): 2122.
[6] YU H, MA Y. A cooperative mission planning method considering environmental factors for UUV swarm to search multiple underwater targets[J]. Ocean Engineering, 2024, 308: 118228.
[7] 郝冠捷, 姚 尧, 常 鹏, 等. 基于深度强化学习的分布式 UUV 集群任务分配算法[J]. Command Control & Simulation / Zhihui Kongzhi yu Fangzhen, 2023, 45(3):1-7.
HAO G J, YAO Y, CHANG P, et al. Distributed UUV cluster task allocation algorithm based on deep reinforcement learning [J]. Command Control & Simulation / Zhihui Kongzhi yu Fangzhen, 2023, 45(3):1-7.
[8] ZHU D, YANG S X. Current effect-eliminated optimal target assignment and motion planning for a multi-UUV system[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 8419-8428.
[9] LI T, SUN S, WANG P, et al. A multi-objective bi-level task planning strategy for UUV target visitation in ocean environment[J]. Ocean Engineering, 2023, 288: 116022.
[10] 徐健, 朱慧龙, 陈涛, 等. 受人观测启发的UUV前视声纳滤波方法[J]. 仪器仪表学报, 2016, 17(5): 1094-1100.
XU J, ZHU H L, CHEN T, et al. A filtering method for UUV forward-looking sonar inspired by human observation[J]. Journal of Instrumentation, 2016, 17(5): 1094-1100.
[11] 张思杰. 基于深度强化学习的多UUV协同任务决策方法研究[D]. 大连: 大连海事大学, 2024.
[12] WU H, WU K, YANG X, et al. Analysis on the operation mode of UAV swarm in urban combat[C]//International Conference on Autonomous Unmanned Systems. Singapore: Springer Nature Singapore, 2022.
[13] SUN Z, SUN H, LI P, et al. Cooperative strategy for pursuit-evasion problem in the presence of static and dynamic obstacles[J]. Ocean Engineering, 2023, 279: 114476.
[14] QIAN F, SU K, LIANG X, et al. Task assignment for UAV swarm saturation attack: A deep reinforcement learning approach[J]. Electronics, 2023, 12(6): 1292.
[15] ZHANG T, ZUO Y, ZHANG D, et al. Research on Autonomous Maneuvering Strategies of UAV Swarm for Saturation Attack[C]//2022 IEEE International Conference on Unmanned Systems (ICUS). IEEE, 2022.
[16] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: Algorithm and applications[J]. Future generation computer systems, 2019, 97: 849-872.