方位历程图是声呐中阵列信号处理中的重要参考结果。从方位历程图中提取可能存在的轨迹,对于后续的识别及跟踪处理具有重要的价值。在此背景下,本文提出一种根据时间、角度、功率三维信息融合的目标轨迹提取算法。该算法具体包含峰值筛选、聚类中心提取、轨迹关联及筛选、插值补充、相似去除、卡尔曼平滑等一系列步骤。具有通过数据自适应调整门限,不需要人为设置以及通过三维信息自适应识别交叉轨迹等优点。并对方位历程图数据进行多目标轨迹提取验证。结果表明采用该算法可以对高于环境背景噪声级的可疑轨迹进行有效提取。
The bearing-time recording is an important reference result in array signal processing in sonar. Extracting possible trajectories from the bearing-time recording is of great value for identification and tracking processing. In this context, a target trajectory extraction algorithm based on the fusion of three-dimensional information of time, angle and power is proposed. The algorithm specifically includes a series of steps such as peak screening, cluster center extraction, trajectory association and screening, interpolation supplementation, similarity removal, and Kalman smoothing. It has the advantages of adaptively adjusting the threshold through data without manual setting; adaptively identifying cross trajectories through three-dimensional information. Multi-target trajectory extraction was verified on the data of bearing-time map. The results show that the algorithm can effectively extract suspicious trajectories that are higher than the environmental background noise level.
2026,48(1): 159-164 收稿日期:2025-4-16
DOI:10.3404/j.issn.1672-7649.2026.01.023
分类号:U666.7
基金项目:国家自然科学基金资助项目(12304501)
作者简介:孙向伯(1999-),男,硕士研究生,研究方向为水声信号处理
参考文献:
[1] 郑策, 董超, 郑兵, 等. 面向方位历程交叉场景的多目标检测前跟踪方法[J]. 声学学报, 2024, 49(5): 990-1004.
ZHENG C, DONG C, ZHENG B. etal. A multi-target track-before-detect algorithm in the scenario of bearing trajectory crossing[J]. Acta Acustica, 2024, 49(5): 990-1004.
[2] 肖龙腾. 基于高分辨波束形成的频率-方位二维检测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2024.
[3] 侯觉, 鲁赫. 一种基于峰值提取的历程图增强方法[J]. 舰船电子工程, 2020, 40(3): 94-96+100.
HOU J, LU H. A trajectory enhancement method based on peak extraction in bear-time records[J]. Ship Electronic Engineering, 2020, 40(3): 94-96+100.
[4] WAITE A D. 实用声呐工程[M]. 北京: 电子工业出版社, 2004.
[5] LI Q H, PAN X B, YI L. A new algorithm of background equalization[J]. Acta Acustica, 2000, 25(1): 5-9.
[6] 王晓宇, 杨益新. 一种新的宽带声呐波束域背景均衡方法[J]. 航海工程, 2009, 38(5): 181-185
WANG X Y, YANG Y X. A new background equalization algorithm in beamspace of broadband sonar[J]. Ship & Ocean Engineering, 2009, 38(5): 181-185
[7] 李子高, 李淑秋, 闻疏琳. 基于无人平台的水下目标自动检测方法[J]. 哈尔滨工程大学学报, 2017, 38(1): 103-108
LI Z G, LI S Q, WEN S L. Automatic detection of an underwater target based on UUV[J]. Journal of Harbin Engineering University, 2017, 38(1): 103-108
[8] KANG C Y, LI Q Y, ZHANG X H. Direction of arrival estimation and signal recovery based on single snapshot compressed sensing in frequency domain[J]. Chinese Journal of Acoustics, 2016, 35(2): 125-134
[9] 邱家兴, 王易川, 丁超, 等. 一种自适应门限时间方位历程显示背景均衡算法[J]. 舰船科学技术, 2019, 41(11): 133-137.
QIU J X, WANG Y C, DING C et al. Adaptive threshold background normalization algorithm for bearing-time recording[J]. Ship Science and Technology, 2019, 41(11): 133-137.
[10] 卢彪. 复杂条件下时间方位历程图中目标轨迹提取与检测[D]. 武汉: 华中科技大学, 2017.