针对小口径舰炮近程拦截自杀式无人艇的作战需求,分析了自杀式无人艇在舰艇防御末端有意Z型机动对舰炮火控解算精度和系统射击精度的影响程度,提出一种基于横向速度周期性反向变化特性对无人艇Z型机动的判断方法和在拐弯间隔段开火的射击方法,可有效提高小口径舰炮拦截Z型机动自杀式无人艇的射击效力。研究结果可用于小口径舰炮武器系统反自杀式无人艇的优化改进。
In response to the operational requirements of short-range interception of suicide unmanned surface vessel (USV) by minor-caliber naval-gun, this paper analyzes the impact of intentional Z-shaped maneuvering of suicide USV at the end of ship defense on the accuracy of naval gun fire control and firing effectiveness. A method for judging Z-shaped maneuvering of USV based on the periodic reverse variation characteristics of lateral velocity and a shooting method for firing at turning intervals are proposed, which can effectively improve the firing effectiveness of minor-caliber naval-gun intercepting Z-shaped maneuvering suicide USV. The research results can be used for the optimization and improvement of anti suicide USV in minor-caliber naval gun weapon systems.
2026,48(1): 194-199 收稿日期:2025-4-7
DOI:10.3404/j.issn.1672-7649.2026.01.028
分类号:U664;TP391
作者简介:张逊(1977-),男,硕士,研究员,研究方向为舰炮火控系统
参考文献:
[1] 李楠, 陈练, 庞衍鹏, 等. 无人艇装备技术发展与作战运用探析[J]. 舰船科学技术, 2019, 41(12): 29-34.
LI N, CHEN L, PANG Y P, et al. Analysis on key technologies evolution and application of USV[J]. Ship Science and Technology, 2019, 41(12): 29-34.
[2] 聂玲, 张玲玲. 无人船艇技术及军事应用探究[J]. 舰船电子工程, 2022, 42(11): 4-7.
NIE L, ZHANG L L. Research on unmanned boat technology and military application[J]. Ship Electronic Engineering, 2022, 42(11): 4-7.
[3] 张永平. 无人舰艇-未来海战模式改变者[J]. 坦克装甲车辆·新军事, 2017, 10(5): 36-41.
ZHANG Y P. Unmanned warships-game changers in future naval warfare[J]. Tank & Armoured Vehicle · New Military Affairs, 2017, 10(5): 36-41.
[4] 万接喜. 外军无人水面艇发展现状与趋势[J]. 国防科技, 2014, 35(5): 91-95.
WAN J X. Status and development trends of foreign military unmanned surface boats[J]. National Defense Science & Technology, 2014, 35(5): 91-95.
[5] 高龙, 王磊, 谢保军, 等. 中口径舰炮对无人水面舰艇射击效力仿真[J]. 兵器装备工程学报, 2022, 43(6): 108-115.
GAO L, WANG L, XIE B J, et al. Firing effectiveness simulation on medium caliber Naval gun against USV[J]. Journal of Ordnance Equipment Engineering, 2022, 43(6): 108-115.
[6] 曹鑫, 崔东华, 冯炜, 等. 舰炮末敏弹反水面无人艇群射击效能仿真分析[J]. 兵器装备工程学报, 2022, 43(7): 191-196.
CAO X, CUI D H, FENG W, et al. Simulation analysis of firing efficiency of naval gun terminal-sensitive projectile against surface unmanned boats[J]. Journal of Ordnance Equipment Engineering, 2022, 43(7): 191-196.
[7] 冯炜, 崔东华, 刘海晓, 等. 反无人艇群弹药战斗部参数对效能影响分析[J]. 兵工学报, 2022, 43(S2): 26-31.
FENG W, CUI D H, LIU H X, et al. Influence of warhead parameters of munitions against usv group on combat effectiveness[J]. Acta Armamentarii, 2022, 43(S2): 26-31.
[8] 慕东东. 单艉机推进无人水面艇的建模及运动控制策略研究[D]. 大连: 大连海事大学, 2020
GE D D. Research on modeling and motion control strategy of single stern propulsion unmanned surface vehicle[D]: (Doctoral dissertation). Dalian Maritime University, 2020.
[9] 舒长胜, 孟庆德. 舰炮武器系统应用工程基础[M]. 北京: 国防工业出版社, 2014.
SHU C S, MENG Q D. Fundamentals of application engineering for naval artillery weapon systems[M]. Beijing: National Defense Industry Press, 2014.
[10] 潘冠华. 舰艇综合指挥控制系统原理[M]. 西安: 西北工业大学出版社, 2010.
PAN G H, Chief editor. principles of integrated command and control system for warships [M]. Xi'an: Northwestern Polytechnical University Press, 2010.