为解决船舶设备抗冲击评估软件对外依赖度较高的问题,本文设计并实现了一款基于动态设计分析方法(Dynamic Design Analysis Method,DDAM)的船舶设备抗冲击评估系统。该系统依托于海洋结构分析软件(Structure Analysis of Marine Structures,SAM)进行深度开发,在继承SAM软件通用功能模块的基础上,进一步研发抗冲击评估系统专用的前后处理模块和核心计算模块,其中前后处理模块按照DDAM的计算流程设置并管理响应谱曲线、响应谱分析任务,核心计算模块采用本文提出的一种基于DDAM的设备抗冲击密集模态分析方法,在响应谱分析的基础上处理密集模态的影响。典型算例船舶柜体设备测试结果表明,本文研发的系统能够精确高效地完成模型的导入显示、前后处理以及求解计算,计算结果与商用软件偏差小于0.1%,实现了船舶设备抗冲击评估的自主可控。
To address the high external dependency of ship equipment shock resistance evaluation software, this paper presents the design and implementation of a ship equipment shock resistance evaluation system based on the Dynamic Design Analysis Method (DDAM). This system undergoes in-depth development with reliance on the marine structure analysis software SAM. While inheriting the general functional modules of SAM, it further develops specialized preprocessing and postprocessing modules as well as a core computational module for the shock resistance evaluation system. Specifically, the preprocessing and postprocessing modules are configured to set and manage response spectrum curves and analysis tasks according to the DDAM computation process. The core computational module employs a dense modal analysis method for equipment shock resistance based on DDAM, which processes the effects of dense modes on the basis of response spectrum analysis. Test results from a typical example of ship cabinet equipment demonstrate that the system developed in this paper can accurately and efficiently perform model import, display, preprocessing and postprocessing, as well as solution computation. The computation results deviate less than 0.1% from commercial software results.
2026,48(1): 200-205 收稿日期:2024-8-31
DOI:10.3404/j.issn.1672-7649.2026.01.029
分类号:U662;TP391.7
基金项目:国家重点研发计划资助项目(2022YFB3306200)
作者简介:刘悦(1998-),男,硕士,助理工程师,研究方向为船舶工程与人工智能
参考文献:
[1] 侯世红. 基于DDAM方法的某舰载火控雷达抗冲击仿真计算[J]. 机械设计, 2020, 37(7): 87-92.
HOU S H. Simulation and calculation of shock resistance of a ship-borne fire control radar based on DDAM[J]. Journal of Machine Design, 2020, 37(7): 87-92.
[2] 夏雪宝, 明志茂, 余云加, 等. 基于DDAM的舰船蓄电池组抗冲击仿真计算[J]. 机械研究与应用, 2023, 36(6): 48-50.
XIA X B, MING Z M, YU Y J, et al. Finite element simulation analysis of naval storage battery shock test based on DDAM method[J]. Mechanical Research & Application, 2023, 36(6): 48-50.
[3] 金建海, 叶永林, 田超, 等. 三维水弹性集成软件的设计与实现[J]. 船舶力学, 2011, 15(5): 521-529.
JIN J H, YE Y L, TIAN C, et al. Design and implementation for 3D hydroelasticity integrated software[J]. Journal of Ship Mechanics, 2011, 15(5): 521-529.
[4] 孙宇鹏, 刘镇, 李伟军. 基于DDAM方法的船舶推进系统冲击响应仿真[J]. 船海工程, 2012, 41(5): 153-155.
SUN Y P, LIU Z, LI W J. Simulation of shock resistance capability of ship propulsion system based on DDAM[J]. Ship& Ocean Engineering, 2012, 41(5): 153-155.
[5] 赵应龙, 何琳, 吕志强. 应用DDAM进行船舶浮筏隔振装置抗冲击计算[J]. 工程力学, 2007, (4): 159-167.
[6] 金建海. 船舶CAE前后处理系统研制[D]. 无锡: 江南大学, 2012.
[7] 徐娜, 李敏, 丁军, 等. SAM软件前处理系统设计与实现[J]. 计算机辅助工程, 2023, 32(2): 69-72.
XU N, LI M, DING J, et al. Design and implementation of SAM pre-processing system[J]. Computer Aided Engineering, 2023, 32(2): 69-72.
[8] 巩庆涛. 船体大型结构装焊连续工艺模拟方法与应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[9] 王思雨, 顾学康, 丁军, 等. 基于B样条的船体网格自动生成方法[J]. 船舶工程, 2021, 43(12): 185-189.
WANG S Y, GU X K, DING J, et al. Auto-generating method of ship hull mesh based on b-spline[J]. Ship Engineering, 2021, 43(12): 185-189.
[10] 杨义波, 李旭, 王胜利, 等. 基于Qt和OpenGL的工程机械运动控制和仿真研究[J]. 现代制造工程, 2019(6): 73-78+88.
YANG Y B, LI X, WANG S L, et al. Research on motion control and simulation of construction machinery based on Qt and OpenGL[J]. Modern Manufacturing Engineering, 2019(6): 73-78+88.
[11] 韩少燕. 舰用燃机抗冲击分析方法与模型简化研究[D]. 大连: 大连理工大学, 2015.
[12] 张强, 何朝勋, 杨建军. 应用Ansys的DDAM方法进行舰船设备的抗冲击计算[J]. 舰船科学技术, 2011, 33(12): 42-45+50.
ZHANG Q, HE C X, YANG J J. The shock resistance research of warship equipment with DDAM using Ansys[J]. Ship Science and Technology, 2011, 33(12): 42-45+50.
[13] 浦军, 石邦凯. 基于DDAM的某舰用升降装置抗冲击分析[J]. 舰船科学技术, 2017, 39(15): 128-132.
PU J, SHI B K. Shock resistance analysis on certain ship lift based on DDAM[J]. Ship Science and Technology, 2017, 39(15): 128-132.
[14] 曹贻鹏, 费景州, 闫力奇, 等. 基于DDAM方法的船舶柴油机排气消声器抗冲击优化研究[J]. 舰船科学技术, 2018, 40(11): 67-72.
CAO Y P, FEI J Z, YAN LIQI, et al. Shock resistance design of marine diesel silencer based on DDAM[J]. Ship Science and Technology, 2018, 40(11): 67-72.
[15] GJB 1060.1-91. 舰船环境条件要求-机械环境[S]. 1991.