为了探究顺流向沟槽对螺旋桨表面流场的影响,选取桨叶0.7半径处的翼型剖面为研究对象,利用高时间分辨率粒子图像测速系统对“月牙形”翼型表面的流场进行试验测试研究,对比分析了0.7 mm沟槽表面翼型和光滑表面翼型在流速0.2、0.3和0.4 m/s以及迎角在5°、10°和15°的平均速度场、湍流度分布以及涡结构变化规律。试验结果表明,顺流向的沟槽可以有效降低近壁面的速度梯度并减少表面的涡结构分布,该现象在迎角10°、流速0.3 m/s时较为明显;随着流速和迎角的增加,沟槽对于流场的优化效果逐渐降低。
To investigate the influence of downstream grooves on the propeller surface flow field, the airfoil profile at the 0.7R blade radius was selected. The flow field over a crescent-shaped airfoil surface was experimentally studied using a high-time-resolved particle image velocimetry system. Comparative analyses were performed on the mean velocity fields, turbulence distributions, and vortex structures between grooved and smooth surface airfoils. These analyses were conducted at flow velocities of 0.2, 0.3, and 0.4 m/s, and angles of attack of 5°, 10°, and 15°. The results demonstrate that downstream grooves effectively reduce the near-wall velocity gradient and suppress vortex formation on the surface. This effect is most pronounced at an angle of attack of 10° and a flow velocity of 0.3 m/s. Furthermore, the flow field optimization provided by the grooves diminishes with increasing velocity and angle of attack.
2026,48(2): 1-6 收稿日期:2025-4-16
DOI:10.3404/j.issn.1672-7649.2026.02.001
分类号:U661.1
基金项目:黑龙江省自然科学基金资助项目(YQ2022E015)
作者简介:王诗洋(1981-),男,硕士,研究员,研究方向为舰船水动力性能
参考文献:
[1] TIAN G, FAN D, FENG X, et al. Thriving artificial underwater drag-reduction materials inspired from aquatic animals: progresses and challenges[J]. RSC Advances, 2021, 11(6): 3399-3428.
[2] 刘明杰, 吴青山, 严昊, 等. 仿生减阻表面的进展与挑战[J]. 北京航空航天大学学报, 2022, 48(9): 1782-1790.
LIU M J, WU Q S, YAN H, et al. Progress and challenges of bionic drag reduction surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1782-1790.
[3] WALSH M, LINDEMANN A. Optimization and application of riblets for turbulent drag reduction[M]. American Institute of Aeronautics and Astronautics, 1984.
[4] WALSH M J. Riblets as a viscous drag reduction technique[J]. AIAA Journal, 1983, 21(4): 485-486.
[5] BACHER E, SMITH C. A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications[M]. American Institute of Aeronautics and Astronautics, 1985.
[6] CUI G, PAN C, WU D, et al. Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2433-2442.
[7] 李永成, 张华. 平板仿生沟槽表面减阻性能数值模拟研究[J]. 舰船科学技术, 2023, 45(9): 28-31.
LI Y C, ZHANG H. Numerical simulation on drag reduction characteristies of bionie surface[J]. ship science and technology, 2023, 45(9): 28-31.
[8] 赖昭, 郝宇, 姜晨. 鲨鱼盾鳞仿生表面单元结构优化及减阻性能研究[J]. 舰船科学技术, 2024, 46(20): 50-55.
LAI Z, HAO Y, JIANG C. Research on unit structure optimization and drag reduction performance of shark shield scale bionic surface[J]. ship science and technology, 2024, 46(20): 50-55.
[9] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV试验研究[J]. 物理学报, 2019, 68(7): 194-204.
LI S, JIANG N, YANG S Q. Influence of sinusoidal riblets on the coherent structures in turbulent boundary layer studied by time-resolved particle image velocimetry[J]. ACTA PHYSICS, 2019, 68(7): 194-204.
[10] 刘丽霞, 王康俊, 王鑫蔚, 等. 沟槽超疏水复合壁面湍流边界层减阻机理的TRPIV试验研究[J]. 试验流体力学, 2021, 35(1): 117-125.
LIU L X, WANG K J, WANG X W, et al. TRPIV experimental investigation of drag reduction mechanism inturbulent boundary layer over superhydrophobic-riblet surface[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 117-125.
[11] 刘朝阳, 王鑫蔚, 王轩, 等. 微结构超疏水壁面湍流边界层减阻机理的TR-PIV实验研究[J]. 实验流体力学, 2025, 39(2): 54-64.
LIU C Y, WANG X W, WANG X, et al. Experimental study of the mechanism of drag reducti-on in turbulent boundary layers on the superhydrophobic structured wall with microstructure[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(2): 54-64.
[12] 牛志罡, 罗大海, 王子尧. 表面微沟槽对风力机翼型气动性能的影响研究[J]. 动力工程学报, 2022, 42(12): 1246-1254.
NIU Z G, LUO D H, WANG Z Y. Influence of surface riblets on the aerodynamic performance of wind turbine airfoils[J]. Journal of Power Engineering, 2022, 42(12): 1246-1254.
[13] SAREEN A, DETERS R, HENRY S, et al. Drag reduction using riblet film applied to airfoils for wind turbines[J]. Journal of Solar Energy Engineering, 2013, 136.
[14] RADMANESH M, SAMANI I, AMIRIYOON A, et al. The effects of rectangular riblets on rectangular micro air vehicles for drag reduction[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(2): 364-373.
[15] 时雪梅. 沟槽表面减阻特性的数值模拟研究[D]. 南京: 南京航空航天大学, 2020.
[16] 唐俊, 刘岩岩, 闫一天. 水下航行器仿生非光滑表面减阻特性[J]. 兵工学报, 2022, 43(5): 1135-1143.
TANG J, LIU Y Y, YAN Y T. Drag reduction characteristics of bionic non-smooth surface for underwater vehicle[J]. Acta Armamentarii, 2022, 43(5): 1135-1143.
[17] JIMÉNEZ J, PINELLI A. The autonomous cycle of near-wall turbulence[J]. Journal of Fluid Mechanics, 1999, 389: 335-359.