海洋平台中的月池是贯穿整个平台的垂向开口结构,当月池内部流体运动频率与月池结构固有频率接近时会发生共振现象,严重威胁平台的安全性与作业效率。本研究针对带月池平台的流体共振现象,基于势流理论与计算流体力学的数值模型,模拟不同周期波浪作用下月池内部流场动态特性,系统研究了无凸缘结构及3种不同凸缘结构下月池内流体水动力特性及共振抑制机理。对比分析了无凸缘结构及3种凸缘结构在不同波浪周期下的月池响应特性。研究结果表明:凸缘结构对月池内流体共振现象有明显抑制作用,凸缘结构产生的涡旋可与自由液面产生充分作用,增加能量耗散并改善月池内部波面幅值,研究结果可为海洋工程结构物中月池结构的被动式抑制优化设计提供参考。
The moonpool in offshore platforms is a vertical opening structure that spans the entire platform. When the frequency of fluid motion inside the moonpool approaches the inherent frequency of the moonpool structure, resonance occurs, posing a serious threat to the platform's safety and operational efficiency. This study focuses on the fluid resonance phenomenon in moonpool platforms. Based on potential flow theory and a numerical model of computational fluid dynamics, the dynamic characteristics of the flow field inside the moonpool under different wave periods are simulated. The hydrodynamic characteristics and resonance suppression mechanisms of the fluid inside the moonpool are systematically studied for the structure with no convex appendage and three different convex appendage structures. A comparative analysis of the moonpool response characteristics under various wave periods is conducted. The results show that the convex appendage have a significant suppressive effect on the fluid resonance phenomenon in the moonpool. The vortices generated by the convex appendage interact effectively with the free surface, increasing energy dissipation and improving the wave amplitude inside the moonpool. The findings of this study can provide a reference for the passive suppression optimization design of moonpool structures in offshore engineering.
2026,48(2): 7-14 收稿日期:2025-4-21
DOI:10.3404/j.issn.1672-7649.2026.02.002
分类号:U662
基金项目:国家能源深水油气工程技术研发中心主任基金资助项目(KJQZ-2024-2103)
作者简介:贾尚儒(1994-),男,硕士,工程师,研究方向为海洋工程结构物设计及分析
参考文献:
[1] 孙采微, 杨建民, 吕海宁. 波浪作用下带月池结构船体运动数值预报[J]. 海洋工程, 2013, 31(4): 21-29
SUN C W, YANG J M, LU H N. Numerical investigation on motions of vessel with moonpool in wave conditions[J]. The Ocean Engineering, 2013, 31(4): 21-29
[2] FUNG D P K. Added mass and damping of circular moonpools[C]//The Sixth International Offshore and Polar Engineering Conference, Los Angeles, California, USA, 1996.
[3] SON H J, CHOI S H, KIM M H, et al. Drag reduction of recess type moonpool under vessel’s forward speed[C]//27th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, Estoril, Portugal, 2008: 143-148.
[4] FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge University Press, 1993.
[5] SALMAN S, KANG Z, YAO X L. Oscillations in moonpool at static platform in waves[C]//26th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, San Diego, California, USA, 2007: 413-421.
[6] KANG Z, SALMAN S, YAO X L. Acoustics and hydrodynamics of circle and square moonpool: An experimental research[C]//26th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, San Diego, California, USA, 2007: 423-431.
[7] KANG Z, YAO X, SALMAN S. Experimental research on flow induced oscillations in moonpool encountered through waves[C]//26th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, San Diego, California, USA, 2007: 433-442.
[8] 刘利琴, 郭颖, 刘春媛, 等. 基于CFD方法研究月池内部流体对Spar平台垂荡运动的影响[J]. 船舶力学, 2017, 21(9): 1086-1098.
LIU L Q, GUO Y, LIU C Y, et al. Effects of water inside moon pool on the heaving motions of a spar platform by cfd method[J]. Journal of Ship Mechanics, 2017, 21(9): 1086-1098.
[9] 黄磊, 刘利琴, 唐友刚, 等. 水平激励下钻井船矩形月池的水动力特性研究[J]. 天津大学学报: 自然科学与工程技术版, 2015, 48(11): 1001-1008.
HUANG L, LIU L Q, TANG Y G, et al. Hydrodynamic characteristics of rectangular moonpool of drilling unit under horizontal excitation[J]. Journal of Tianjin University, 2015, 48(11): 1001-1008.
[10] 刘春媛, 刘利琴, 黄磊. 基于等效单摆模型的全开口月池内流体晃动特性研究[J]. 天津理工大学学报, 2015, 31(1): 45-50.
LIU C Y, LIU L Q, HUANG L. Study on sloshing fluid in fully open moonpool based on equivalent pendulum model[J]. Journal of Tianjin University of Technology, 2015, 31(1): 45-50.
[11] MOLIN B. On the piston and sloshing modes in moonpools[J]. Journal of Fluid Mechanics, 2001, 430: 27-50.
[12] FALTINSEN O M, ROGNEBAKKE O F, TIMOKHA A N. Twodimensional resonant piston-like sloshing in a moonpool[J]. Journal of Fluid Mechanics, 2007, 575: 359-397.
[13] SUN L, EATOCK R, TAYLOR P H. Wave driven free surface motion in the gap between a tanker and an FLNG barge[J]. Applied Ocean Research, 2015, 51: 331-349.
[14] SAITOH T, MIAO G P, ISHIDA H. Theoretical analysis on appearance condition of fluid resonance in a narrow gap between two modules of very large floating structure[C]//The 3rd Asia-Pacific Workshop on Marine Hydrodynamics, Shanghai, China, 2006: 170-175.
[15] 孙雷, 邓潇潇, 曾智宏, 等. 波浪作用下钻井船的共振数值计算及分析[J]. 中国舰船研究, 2020, 15(6): 90-105+114.
SUN L, DENG X X, ZENG Z H, et al. Numerical calculation and analysis of resonance of drillship in waves[J]. Chinese Journal of Ship Research, 2020, 15(6): 90-105+114.
[16] 黄海洋, 许新, 张新曙, 等. 关于固定和自由浮动船舶三维月池共振的研究[J]. 水动力学研究与进展(A辑), 2019, 34(4): 482-488.
HUANG H Y, XU X, ZHANG X S, et al. Study on three-dimensional moonpool resonance of fixed and free-floating vessels[J]. Journal of Hydrodynamics, 2019, 34(4): 482-488.
[17] 邓潇潇. 波流联合作用下带月池平台共振问题研究[D]. 大连: 大连理工大学, 2020.
[18] GAO J, MA X, ZANG J, et al. Numerical investigation of harbor oscillations induced by focused transient wave groups[J]. Coastal Engineering, 2020, 158: 103670.
[19] GAO J, LYU J, WANG J, et al. Study on transient gap resonance with consideration of the motion of floating body[J]. China Ocean Engineering, 2022, 36(6): 994-1006.
[20] FREDRIKSEN A G, KRISTIANSEN T, FALTINSEN O M. Experimental and numerical investigation of wave resonance in moonpools at low forward speed[J]. Applied Ocean Research, 2014, 47: 28-46.
[21] 石城, 吕海宁, 杨建民. 深海钻井船大开口阶梯形月池水体的非线性共振特性研究[J]. 船舶力学, 2021, 25(3): 311-320.
SHI C, LU H N, YANG J M. Nonlinear resonance characteristics of a rectangular rmoonpool with stairways in a deep sea drilling ship[J]. Journal of Ship Mechanics, 2021, 25(3): 311-320.
[22] 余勇军, 刘利琴, 李焱, 等. 通海圆筒型FPSO月池内流体活塞运动特性研究[J]. 中国造船, 2023, 64(6): 73-85.
YU Y J, LIU L Q, LI Y, et al. Piston motion of fluid in cylindrical fpso moon pool connected to seawater[J]. Shipbuilding of China, 2023, 64(6): 73-85.
[23] JIANG S, CONG P, SUN L, et al. Numerical investigation of edge configurations on piston-modal resonance in a moonpool induced by heaving excitations[J]. Journal of Hydrodynamics, 2019, 31: 682-699.
[24] JIANG S C, SUN Z, FENG A, et al. On hydrodynamic behavior of fluid resonance in moonpool and its suppression by using various convex appendages[J]. Ocean Engineering, 2019, 192: 106552.
[25] LAN J, JIANG S, GAO J. Hydrodynamic behavior of fluid resonance between twin boxes in moonpool with various edge profiles under wave actions[J]. China Ocean Engineering, 2023, 37(4): 547-557.
[26] MORADI N, ZHOU T, CHENG L. Effect of inlet configuration on wave resonance in the narrow gap of two fixed bodies in close proximity[J]. Ocean Engineering, 2015, 103: 88-102.
[27] FREDRIKSEN A G, KRISTIANSEN T, FALTINSEN O M. Wave-induced response of a floating two-dimensional body with a moonpool[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2033): 0109