本文研究空心轴螺旋桨对船舶推进性能的影响,分析其在提高推进效率方面的潜力。首先采用雷诺平均纳维–斯托克斯(RANS)方法对空心轴螺旋桨的敞水性能进行数值模拟。其次,从流场力学特性、尾部涡旋结构和整体流动特性等方面,比较分析空心轴与实心轴螺旋桨在工作状态下的差异,最后围绕空心轴内径的尺寸变化对推进性能的影响进行研究。结果表明,空心轴结构能够有效削弱螺旋桨毂后方的低压区域,同时减弱毂涡强度,有利于尾流动能的回收与再利用,从而提升整体推进效率。在所设定的参数范围内,当轴内径与螺旋桨直径之比d/D=0.232,且轴向来流速度VA=1 m/s时,空心轴螺旋桨推进效率提升约11.05%,推力提升约11%,显示出较显著的性能优化效果。研究结果为提升船舶推进装置的性能提供了新的思路与技术路径。
This study investigates the impact of hollow shaft propellers on ship propulsion performance and analyzes their potential in enhancing propulsion efficiency. Firstly, the Reynolds-Averaged Navier–Stokes (RANS) method is employed to numerically simulate the open-water performance of the hollow shaft propeller. Subsequently, a comparative analysis is conducted between hollow and solid shaft propellers under working conditions, focusing on flow field characteristics, wake vortex structures, and overall flow behavior. Finally, the influence of varying hollow shaft inner diameters on propulsion performance is examined. The results indicate that the hollow shaft structure effectively weakens the low-pressure region behind the propeller hub and reduces hub vortex strength, thereby facilitating wake energy recovery and improving propulsion efficiency. Within the defined parameter range, when the ratio of shaft inner diameter to propeller diameter is d/D = 0.232 and the axial inflow velocity VA is 1 m/s, the hollow shaft propeller achieves an efficiency improvement of approximately 11.05% and a thrust increase of about 11%, demonstrating notable performance enhancement. These findings provide new insights and technical approaches for optimizing ship propulsion systems.
2026,48(2): 15-22 收稿日期:2025-5-5
DOI:10.3404/j.issn.1672-7649.2026.02.003
分类号:U661
基金项目:山东省自然科学基金资助项目(ZR202112040200)
作者简介:张占斌(2001-),男,硕士研究生,研究方向为船舶电动推进装置
参考文献:
[1] 郑洁, 柳存根, 林忠钦. 绿色船舶低碳发展趋势与应对策略[J]. 中国工程科学, 2020, 22(6): 94-102.
ZHENG J, LIU C G, LIN Z Q. Low-carbon development trends and coping strategies for green ships[J]. China Engineering Science, 2020, 22(6): 94-102.
[2] International Maritime Organization. Amendments to the annex of the protocol of 1997 to amend the international convention for the prevention of pollution from ships, 1973, as Modified by the Protocol of 1978 Relating Thereto[S]. Resolution Mepc, 2011, 203(62).
[3] International Maritime Organization. The international maritime organization’s initial greenhouse gas strategy[R]. London: IMO’s Marine Environment Protection Committee (MEPC), 2018.
[4] 胡琼, 周伟新, 刁峰. IMO船舶温室气体减排初步战略解读[J]. 中国造船, 2019, 60(1): 195-201.
HU Q, ZHOU W X, DIAO F. Interpretation of IMO’s initial strategy on greenhouse gas emission reduction from ships[J]. Shipbuilding of China, 2019, 60(1): 195-201.
[5] 赵濮玮, 李楷, 董立佳, 等. 节能导管对螺旋桨水动力性能及船体振动水平影响研究[J]. 武汉理工大学学报, 2024, 46(4): 103-110.
ZHAO P W, LI K, DONG L J, et al. Research on the effects of energy-saving nozzles on propeller hydrodynamic performance and hull vibration levels[J]. Journal of Wuhan University of Technology, 2024, 46(4): 103-110.
[6] 施磊, 管殿柱, 邓皓云, 等. 基于CFD的螺旋桨附加毂帽鳍节能性能仿真分析[J]. 中国舰船研究, 2024, 19(S2): 45-56.
SHI L, GUAN D Z, DENG H Y, et al. Simulation analysis of energy-saving performance of propeller boss cap fins based on CFD[J]. Chinese Journal of Ship Research, 2024, 19(S2): 45-56.
[7] 荆玮玮. 加装扇形导管对对转桨的水动力性能分析[D]. 大连: 大连海事大学, 2024.
[8] 刘源. 前置整流导管参数敏感性和节能效果尺度效应研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.
[9] 夏琨. 轮缘式泵喷推进器的水动力性能分析 [D]. 哈尔滨: 哈尔滨工程大学, 2017.
[10] LACKNER M, LÖHR A, SCHILL F, et al. Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors [J]. Fluids, 2024, 9 (7): 168-168.
[11] LIANG P, CHANGFA W, YONGQIANG T, et al. Numerical investigation on hydrodynamic performance of shaftless rim-driven thruster [J]. Journal of Marine Engineering & Technology, 2024, 23 (1): 47-54.
[12] BOAO C, QING X, BINBIN T, et al. Improvement of the efficiency for rim-driven thrusters through acceleration of gap flow [J]. Ocean Engineering, 2024, 291: 116480.