为实现牵引汽艇航速精准预报及航行性能优化,采用数值模拟方法系统分析不同航速下汽艇的阻力特性、姿态变化及与喷水推进器的推力匹配关系。并针对原始艇型纵倾角过大的问题,提出增设尾部楔形板的优化方案。研究结果表明,原艇型在设计航速下的纵倾角过大,可达7.1°,不利于汽艇操纵与航行减阻。通过在艇尾加装楔形角10°的尾部楔形板,可使汽艇在40 km/h航速下的航行纵倾角降至2.5°,显著改善汽艇航行姿态,减小汽艇航行阻力。研究为牵引汽艇的快速性评估与航行性能优化提供了可行的数据支撑与参考方案。
To achieve accurate speed prediction and optimize the performance of towing launch boat, Numerical simulation method was adopted to systematically analyze the boat′s resistance characteristics, attitude changes, and thrust matching with the waterjet at different speeds. Due to the excessive trim angle of the original boat hull at high speed, an optimization scheme of adding a stern wedge plate was proposed. The research results show that: the trim angle of the original hull reaches up to 7.1° at the design speed, which is unfavorable for hull maneuvering and resistance reduction. By installing a stern wedge plate with a wedge angle of 10° at the hull bottom stern, the trim angle of the hull can be reduced to 2.5° at a speed of 40 km/h, which significantly improves the hull′s attitude and reduces the boat′s resistance. This study provides feasible data support and a reference scheme for the rapidity evaluation and navigation performance optimization of towing launch boats。
2026,48(2): 29-34 收稿日期:2025-12-21
DOI:10.3404/j.issn.1672-7649.2026.02.005
分类号:U664.3
作者简介:石中伟(1982-),男,硕士,工程师,研究方向为工程装备管理保障
参考文献:
[1] 史宣琳, 陈兴兰. 国外公路舟桥器材发展现状及展望[J]. 国防交通工程与技术, 2009(4): 69-72
SHI X L, CHEN X L. Current development and prospect of foreign highway pontoon bridge equipment[J]. Traffic Engineering and Technology for National Defense, 2009(4): 69-72
[2] 李明, 王强. 特种作业汽艇航行性能优化研究[J]. 船舶工程, 2022, 44(3): 56-62
LI M, WANG Q. Research on navigation performance optimization of special operation motorboats[J]. Ship Engineering, 2022, 44(3): 56-62
[3] 张华, 刘敏. 滑行艇纵倾角控制技术研究进展[J]. 中国造船, 2021, 62(2): 210-220
[4] SUN H B, LIU B, SUN H W , et al. Study on the influence mechanism of elastic appendage on the longitudinal stability of high-speed planing craft[J]. Ocean Engineering, 2024, 313(1): 119376
[5] VIOLA, IGNAZIO M, ENLANDER, et al. Trim effect on the resistance of sailing planing hulls.[J]. Ocean Engineering, 2014, 88: 187-193
[6] TRAN T G , HUYNH Q V , KIM H C. Optimization strategy for planing hull design[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100471
[7] TAVAKOLI S , ZHANG M , KONDRATENKO A , et al. A review on the hydrodynamics of planing hulls[J]. Ocean Engineering, 2024, 303: 117046.
[8] CHEN S L, WANG C, et al. Numerical study of hydrodynamic characteristics of a gliding-hydrofoil craft in steady flow[C]//The Twenty-fifth International Ocean and Polar Engineering Conference, 2015.
[9] MARCO D A , MANCINI S , MIRANDA S , et al. Experimental and numerical hydrodynamic analysis of a stepped planing hull[J]. Applied Ocean Research, 2017, 64135-64154.
[10] 董文才, 郭日修. 滑行艇阻力研究进展[J]. 船舶力学, 2000, 4(4): 68-81
DONG W C, GUO R X. State of the art of prediction on resistance of planing crafts[J]. Journal of Ship Mechanics, 2000, 4(4): 68-81
[11] 陈家旺, 赵丽. 基于CFD的高速滑行艇阻力性能预报[J]. 船舶力学, 2020, 24(5): 589-598
CHEN J W, ZHAO L. CFD-based resistance performance prediction of high-speed planing craft[J]. Journal of Ship Mechanics, 2020, 24(5): 589-598
[12] 丁江明, 江佳炳, 秦江涛, 等. 高速滑行艇阻力性能RANS计算中网格影响因素[J]. 哈尔滨工程大学学报, 2019, 40(6): 1065-1071
DING J M, JIANG J B, QIN J T, et al. Influencing mesh factors in the calculation of the resistance performance of high-speed planing crafts through RANS[J]. Journal of Harbin Engineering University, 2019, 40(6): 1065-1071
[13] 魏子凡, 井升平, 杨松林. 新型高速艇的CFD模拟和对比分析[J]. 中国舰船研究, 2016, 11(4): 22-28
WEI Z F, JING S P, YANG S L. CFD simulation and comparison analysis of a new type high-speed boat[J]. Chinese Journal of Ship Research, 2016, 11(4): 22-28
[14] 彭言峰. 排水型圆舭折角高速船阻力数值仿真及其计算方法研究[D]. 镇江: 江苏科技大学, 2015.
[15] 郭军, 扈喆, 陈作钢, 等. 基于STAR-CCM+的滑行艇阻力数值计算[J]. 中国造船, 2022, 63(2): 107-115
GUO J, HU Z, CHEN Z G, et al. Numerical calculation of planing craft resistance based on STAR-CCM+[J]. Shipbuilding of China, 2022, 63(2): 107-115
[16] International Maritime Organization. HSC2000: MSC. 537(107): amendments to the international code of safety for high-speed craft, 30-31. [2023-06-08].
[17] 刘阳, 吴涛. 高速艇喷溅阻力CFD模拟方法改进[J]. 船舶工程, 2022, 44(8): 78-84
LIU Y, WU T. Improvement of CFD simulation method for spray resistance of high-speed craft[J]. Ship Engineering, 2022, 44(8): 78-84
[18] ITTC 7.5-02-03-015 (2008). Procedures and guidelines for predicting powering margins[C]//International Towing Tank Conference. 2008. Geneva, Switzerland.
[19] DEMIREL Y K, SONG S, et al. Practical added resistance diagrams to predict fouling impact on ship performance[J]. Ocean Engineering, 187, 106498. DOI:10.1016/j.oceaneng.2019.106498
[20] ITTC 7.5-04-05-01 (2021). Guideline on the determination of model-ship correlation factors[C]//International Towing Tank Conference. 2021. Geneva, Switzerland.
[21] HOLTROP, et al. A statistical re-analysis of resistance and propulsion data[J]. Transactions of the Royal Institution of Naval Architects, 126, 273-290.
[22] 赵伟, 孙丽. 尾部附体对滑行艇姿态的影响研究[J]. 船舶, 2021, 32(4): 34-40
ZHAO W, SUN L. Research on the influence of stern appendages on the attitude of planing craft[J]. Ship & Boat, 2021, 32(4): 34-40