针对舰船设备在水下爆炸冲击下的安全性问题,通过1∶3缩比模型数值模拟,探究实际加工和安装等偏差对设备基础冲击响应的影响规律。建立实尺度与缩比模型,分析质心偏移、隔振器数量、刚度及阻尼变化对缩比模型基础垂向加速度、速度、位移的影响。研究表明设备质心偏移、隔振器数量及刚度变化(±20%)对基础加速度峰值影响小于5%,速度与位移的影响可忽略;隔振器阻尼变化(±20%)导致加速度峰值差异达11%,需重点关注。研究结果阐明了舰船设备缩比模型简化规律,为舰船缩比模型设计及抗冲击性能评估提供借鉴作用。
To address the safety of shipboard equipment under underwater explosion shocks, this study investigates the impact of actual manufacturing deviations on the shock response of equipment foundations through numerical simulations of a 1∶3 scaled model. Full-scale and scaled models were established to analyze the effects of centroid offset, variations in the number of vibration isolators, and changes in isolator stiffness (±20%) and damping (±20%) on vertical acceleration, velocity, and displacement. The results indicate that centroid offset, variations in the number of isolators, and stiffness changes (±20%) have a limited influence on the peak acceleration (≤5%), with negligible effects on velocity and displacement. However, damping variations (±20%) significantly alter the peak acceleration (up to 11% difference), necessitating strict control in design. These findings clarify the simplification rules for scaled models of shipboard equipment and provide critical insights for the design and anti-shock performance evaluation of scaled models.
2026,48(2): 46-51 收稿日期:2025-3-10
DOI:10.3404/j.issn.1672-7649.2026.02.008
分类号:U661.4
基金项目:国家自然科学基金资助项目(52201334)
作者简介:陈攀(1989-),男,博士,高级工程师,研究方向为舰船抗冲击
参考文献:
[1] 周其新, 姚熊亮, 张阿漫, 等. 舰用齿轮箱抗冲击能力时域计算[J]. 中国舰船研究, 2007, 2(3): 44-48+55.
ZHOU Q X, YAO X L, ZHANG A, et al. Anti shock performance analysis of marine gear case by time domain calculation[J]. Chinese Journal of Ship Research, 2007, 2(3): 44-48+55.
[2] 孙远翔, 刘新, 陈岩武, 等. 水下爆炸气泡射流载荷及对结构毁伤研究进展[J]. 舰船科学技术, 2024, 46(1): 1-7.
SUN Y X, LIU X, CHEN Y W, et al. Research progress of underwater explosion bubble jet and its damage to structures[J]. Ship Science and Technology, 2024, 46(1): 1-7.
[3] 张姝红, 权琳, 金辉. 沉底爆炸作用下船体加速度响应特征分析[J]. 舰船科学技术, 2024, 46(20): 1-4.
ZHANG S H, QUAN L, JIN H. Analysis of acceleration response characteristics of ship bull underwater bottom explosion[J]. Ship Science and Technology, 2024, 46(20): 1-4.
[4] 李彦军, 陈旭, 曾庆鹏, 等. 舰船动力设备抗冲击评估方法综述[J]. 中国舰船研究, 2024, 19(3): 61-85.
LI Y J, CHEN X, ZENG Q P, et al. Review of ship power equipment shock resistance evaluation methods[J]. Chinese Journal of Ship Research, 2024, 19(3): 61-85.
[5] 李聪, 王伟, 郝宁, 等. 舰船设备冲击环境预报动力学建模方法[J]. 舰船科学技术, 2022, 44(12): 43-47.
LI C, WANG W, HAO N, et al. The dynamic modeling method of ship equipment shock environment prediction[J]. Ship Science and Technology, 2022, 44(12): 43-47.
[6] 李海涛, 张良贵. 舰船设备抗冲击能力的仿真研究[J]. 舰船科学技术, 2019, 4 1(2): 61–63.
LI H T, ZHANG L G. Simulation research on impact resistance of ship equipment[J]. Ship Science and Technology, 2019, 41(1A):61–63.
[7] 沈中祥, 刘寅东, 郑婷婷. 舰艇管路系统抗冲击设计及性能分析[J]. 舰船科学技术, 2017, 39(9): 108-113.
SHEN Z X, LIU Y D, ZHENG T T. Design for shock resistance of piping system of naval vessels and performance analysis[J]. Ship Science and Technology, 2017, 39(9): 108-113.
[8] 权琳, 贾则, 谢君红, 等. 舰船缩比模型水下爆炸应变数据分析研究[J]. 兵工学报, 2014, 35(S2): 358-361.
QUAN L, JIA Z, XIE J H, et al. Analysis of strain data in underwater explosion of ship's scaled model[J]. Acta Armamentarii, 2014, 35(S2): 358-361.
[9] 程素秋, 宁永成, 张臣, 等. 相似理论在水下爆炸模型试验中的应用[J]. 舰船科学技术, 2008, 30(3): 95-100.
CHENG S Q, NING Y C, ZHANG C, et al. The application of scaling laws to underwater explosion models test[J]. Ship Science and Technology, 2008, 30(3): 95-100.
[10] 王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究[J]. 力学学报, 2020, 52(3): 774-786.
WANG S, XU F, DAI Z, et al. A direct scaling method for the distortion problems of structural impact[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 774-786.
[11] 秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法[J]. 爆炸与冲击, 2010, 30(5): 511-516.
QIN J ZHANG Z H. A scaling method for predicting dynamic response of stiffened plates made of materials different form experimental models[J]. Explosion and Shock Waves, 2010, 30(5): 511-516.
[12] 王青文, 袁杰红, 周仕明. 典型冲击载荷下螺栓法兰连接结构失效模拟[J]. 强度与环境, 2017, 44(5): 21-27.
WANG Q W, YUAN J H, ZHOU S M. Numerical simulation for the failure of bolted flage connection structure under typical impact load[J]. Structure & Environment Engineering, 2017, 44(5): 21-27.
[13] JORGE E, ALÉ ARANEDA. Dimensional-directional analysis by a quaternionic representation of physical quantities[J]. Journal of the Franklin Institute, 1996, 333(1): 113-126.
[14] GARBATOV Y, SAAD-ELDEEN S, GUEDES SOARES C. Hull girder ultimate strength assessment based on experimental results and the dimensional theory[J]. Engineering Structures, 2015, 100: 742-750.
[15] IIJIMA K, SUZAKI Y, FUJIKUBO M. Scaled model tests for the post-ultimate strength collapse behaviour of a ship’s hull girder under whipping loads[J]. Ships & Offshore Structures, 2015, 10(1): 31-38.
[16] GJB1060.1–1991, 舰船环境条件要求机械环境[S]. 北京: 国防科学技术工业委员会, 1991.
GJB 1060.1–1991, General requirement for environmental conditions of naval ships mechanical environments[S]. Beijing: Commission for Science, Technology and Industry for National Defense, 1991.
[17] 夏雪宝, 明志茂, 余云加, 等. 舰船设备双波冲击试验仿真分析方法研究[J]. 环境技术, 2022, 40(4): 199-203.
XIA X B, MING Z M, YU Y J, et al. Research on finite element simulated analysis of naval equipment dual-wave shock test[J]. Environmental Technology, 2022, 40(4): 199-203.
[18] Military Specification, BV043-85 Germany defense naval ship construction specification for shock and safety[S]. 1985.
[19] HJB715-2016, 舰船冲击响应谱[S]. 北京: 中国人民解放军海军, 2017.
HJB 715-2016, The shock response spectrum of naval ships[S]. Beijing: People's Liberation Army Navy, 2017.