提高升阻比是实现水下滑翔机低功耗和远距离航行的重要手段之一。本文采用粘性流体理论,基于流体软件STAR-CCM+,数值模拟了典型水下滑翔机的升阻比变化。然后从压力和涡量分布规律2个角度对典型水下滑翔机模型进行研究,并对典型水下滑翔机模型进行了结构优化设计,做了数值模拟仿真验证。本文研究可以为后期水下滑翔机的结构改进及外形优化提供参考。
Improving lift-to-drag ratio is one of the crucial means to achieve low power consumption and long-distance navigation of underwater gliders. In this study, employing the theory of viscous fluid dynamics and utilizing the fluid software STAR-CCM+, the variation law of lift-to-drag ratio with angle of attack for a typical underwater glider is numerically simulated. Subsequently, from the perspectives of pressure distribution, streamline distribution, and vorticity distribution, structural optimization design of the typical underwater glider model is conducted, followed by numerical simulation and validation. This research can provide reference for the structural improvement and shape optimization of underwater gliders in the later stage.
2026,48(2): 74-78 收稿日期:2024-4-10
DOI:10.3404/j.issn.1672-7649.2026.02.012
分类号:U661;P756
基金项目:山东省船舶控制工程与智能系统工程技术研究中心科研开放专项资金项目(SSCC20210001)
作者简介:张凯(1989-),男,硕士,讲师,研究方向为海洋工程水动力
参考文献:
[1] 孔巧玲. 利用海洋温差能的水下热滑翔机相变过程和动力性能研究[D]. 上海: 上海交通大学, 2010.
[2] D' SPAIN G, ZIMMERMAN R, JENKINS S A, et al. Acoustic sensor systems on a flying wing underwater glider and two prop-driven autonomous underwater vehicles[J]. Journal of the Acoustical Society of America, 2008, 123(5): 3007.
[3] D' SPAIN G L. Flying wing autonomous underwater glider for basic research in ocean acoustics, signal/array processing, underwater autonomous vehicle technology, oceanography, geophysics, and marine biological studies[R]. Scripps Institution of Oceanography La Jolla Marine Physical Lab, 2009.
[4] ZHANG D, WANG Z, LING H, et al. Kriging-based shape optimization framework for blended-wing-body underwater glider with NURBS-based parametrization[J]. Ocean Engineering, 2020, 219(58): 108212.
[5] ZHANG D, ZHANG B, WANG Z, et al. An efficient surrogate-based optimization method for BWBUG based on multifidelity model and geometric constraint gradients[J]. Mathematical Problems in Engineering, 2021: 1-13.
[6] LI C S, WANG P, QIU Z M, et al. A double-stage surrogate-based shape optimization strategy for blended-wing-body underwater gliders[J]. China Ocean Engineering, 2020, 34(3): 400-410.
[7] LI C, WANG P, DONG H, et al. A simplified shape optimization strategy for blended-wing-body underwater gliders[J]. Structural and Multidisciplinary Optimization, 2018, 58: 2189-2202.
[8] WU X, WANG P, LI J, et al. Adjoint-based optimization for blended-wing-body underwater gliders' shape design[C]//OCEANS-MTS/IEEE Kobe Techno-Oceans, 2018.
[9] 张代雨, 曹磊, 张贝, 等. 基于CFD的水下滑翔机水动力导数计算[J]. 舰船科学技术, 2023, 45(24): 38-46.
ZHANG D Y, CAO L, ZHANG B, et al. Calculation of hydrodynamic derivatives of underwater gliders based on CFD[J]. Ship Science and Technology, 2023, 45(24): 38-46.
[10] 张贝, 吕海宁, 杨建民, 等. 基于滑移网格的翼身融合水下滑翔机水动力性能研究[J]. 船舶力学, 2023, 27(11): 1629-1640.
ZHANG B, LV H N, YANG J M, et al. Research on hydrodynamic performance of wing body fusion underwater glider based on sliding mesh[J]. Ship Mechanics, 2023, 27(11): 1629-1640.
[11] 刘健, 周广礼, 彭嘉澍, 等. 双壳体混合驱动水下滑翔机结构原理及水动力性能研究[J]. 水下无人系统学报, 2024, 32(1): 25-31.
LIU J, ZHOU G L, PENG J S, et al. Research on the structural principle and hydrodynamic performance of a dual shell hybrid drive underwater glider[J]. Journal of Underwater Unmanned Systems, 2024, 32(1): 25-31
[12] 王志东, 钱进, 凌宏杰, 等. 基于重叠网格的救生艇抛落入水全过程数值预报方法研究[J]. 中国造船, 2020, 61(S2): 330-339.
WANG Z D, QIAN J, LING H J, et al. Study on numerical prediction method of the whole process of lifeboat falling into water based on overlapping grid[J]. China Shipbuilding, 2020, 61(S2): 330-339.
[13] 乔永亮, 桂洪斌, 刘祥鑫. 三维圆柱绕流数值模拟湍流方法 的选择[J]. 水利水运工程学报, 2016(3): 119-125
QIAO Y L, GUI H B, LIU X X. Selection of turbulence methods for numerical simulation of three-dimensional cylindrical flow[J]. Journal of Water Resources and Transportation Engineering, 2016(3): 119-125