船舶综合电力系统含有多类异构发电单元,在航行速度波动下易引发功率振荡、频率崩溃及能效退化问题,使得船舶电力系统低频减载综合切负荷量难以评估,缺乏应对航行速度波动下负荷变化的能力,导致船舶电力系统能效较高。为此,提出考虑航行速度的船舶电力系统负荷优化分配方法。利用层次分析法,考虑航速影响动态评估负荷重要性,计算船舶电力系统低频减载过程中的负荷切除因子,量化切负荷代价。考虑航行速度,通过航段离散与积分方法,计算船舶能效指数。以最小化低频减载综合切负荷量与船舶能效指数为目标函数,以机组出力、功率平衡及航速为约束,实现对发电机组功率与负荷切除量的协同优化分配。实验证明:所提方法在30%功率缺额下可将系统最大低频减载代价从350 W降至200 W,EEXI从34降至20,显著增强了系统的鲁棒性与运行经济性。
The integrated power system of ships, which comprises heterogeneous generation units, is prone to power oscillations, frequency instability, and energy efficiency degradation under fluctuating sailing speeds. These challenges complicate the assessment of under-frequency load shedding (UFLS) costs and undermine the system's adaptability, ultimately leading to high energy consumption. To address this, a novel load optimization method considering sailing speed is proposed. This method dynamically evaluates load priority using the Analytic Hierarchy Process (AHP) to quantify the load shedding cost during UFLS events. Furthermore, it calculates a dynamic Ship Energy Efficiency Index (EEXI) by discretizing the voyage and integrating emissions. A dual-objective optimization model is established to simultaneously minimize both the comprehensive UFLS cost and the EEXI, subject to constraints including unit output and power balance. Experimental results demonstrate that the proposed method can reduce the maximum UFLS cost from 350W to 200W and the EEXI from 34 to 20 under a 30% power deficit, significantly enhancing the system's robustness and operational economy.
2026,48(2): 89-93 收稿日期:2025-9-24
DOI:10.3404/j.issn.1672-7649.2026.02.015
分类号:U665.1;TM731
作者简介:王红涛(1985-),男,硕士,讲师,研究方向为轮机工程
参考文献:
[1] 李图浩, 牟龙华, 庄伟. 基于压缩感知的船舶电力系统谐波源定位仿真[J]. 计算机仿真, 2025, 42(5): 553-558.
LI T H, MU L H, ZHUANG W. Simulation of harmonic source localization in ship power system based on compressed sensing[J]. Computer Simulation, 2025, 42(5): 553-558.
[2] 肖朝霞, 朱洪驰, 曹家宁, 等. 有源前端组网的直流船舶电网高能效运行控制[J]. 电力系统及其自动化学报, 2024, 36(1): 61-70.
XIAO Z X, ZHU H C, CAO J N, et al. High energy efficiency operation and control of DC shipboard grid with active front end networking[J]. Proceedings of the CSU-EPSA, 2024, 36(1): 61-70.
[3] 柯水清, 杨祥国, 李昕, 等. 基于MPC-HHO的船载复合储能系统规划与运行策略协同优化方法[J]. 中国舰船研究, 2025, 20(4): 233-245.
KE S Q, YANG X G, LI X, et al. Collaborative optimization for planning and operation strategy of shipboard hybrid energy storage systems based on MPC-HHO[J]. Chinese Journal of Ship Researc, 2025, 20(4): 233-245.
[4] 姜俊道, 邹亮, 刘星斗, 等. 结合负荷多步预测的氢能船舶双层能量调度策略[J]. 电力系统自动化, 2025, 49(13): 166-176.
JIANG J D, ZOU L, LIU X D, et al. Bi-level energy scheduling strategy for hydrogen-powered ships combined with multi-step load forecasting[J]. Automation of Electric Power Systems, 2025, 49(13): 166-176.
[5] 吴其桓, 朱志宇, 郝伟汉, 等. 考虑负荷时变特性的船舶电力系统动态重构优化策略[J]. 中国舰船研究, 2025, 20(3): 241-248.
WU Q H, ZHU Z Y, HAO W H, et al. Shipboard power system dynamic reconfiguration optimization strategy considering time-varying load characteristics[J]. Chinese Journal of Ship Research, 2025, 20(3): 241-248.
[6] 张磊, 马宇飞. 考虑系统频率调节约束的电力系统动态优化调度[J]. 电子设计工程, 2023, 31(2): 188-193.
ZHANG L, MA Y F. Dynamic optimal dispatch of power system considering system frequency regulation constraints[J]. Electronic Design Engineering, 2023, 31(2): 188-193.
[7] 洪远远, 施伟锋. 基于飞轮储能技术的船舶区域配电系统冲击负荷供能策略[J]. 船舶工程, 2023, 45(1): 103-109.
HONG Y Y, SHI W F. Impulse load energy supply strategy of ship regional distribution power system based on flywheel energy storage technology[J]. Ship Engineering, 2023, 45(1): 103-109.