针对自主水下航行器(Autonomous Underwater Vehicles,AUV)在全局路径规划环境模型的复杂性问题,本文采用栅格法进行环境建模。在数学优化模型中,综合了路径长度、能耗和路径平滑度为评价准则。本文提出一种考虑海洋地形及涡流影响的AUV路径规划改进蚁群算法,通过改进初始信息素分布,提出一种基于轴向-基础双高斯混合分布的初始化策略,并采用自适应的启发函数因子以及信息素因子和挥发素得到最优解。同时,考虑AUV在海底运行时的三维空间,需要目标点进行引导来加快收敛速度进而改进启发函数。最后根据海底地形信息和由涡流形成的洋流模型,设置2种地形进行仿真实验。通过实验可以得出,本文所提算法求解精度更高、收敛速度更快、稳定性更强。
For the AUV its complexity problem in global path planning environment modelling when, this paper uses the raster method for environment modelling. In the mathematical optimisation model, path length, energy consumption and path smoothness are integrated as evaluation criteria. In addition, this paper proposes an improved ant colony algorithm for AUV path planning considering the influence of ocean topography and eddy currents by improving the initial pheromone distribution, proposing an initialisation strategy based on the axial-basic double Gaussian mixture distribution, and adopting an adaptive heuristic function factor as well as pheromone factor and volatiles to obtain the optimal solution. At the same time, considering that AUVs operate in three-dimensional space when running on the seabed, target points are needed to guide them in order to accelerate convergence speed and improve the heuristic function. Finally, based on the information of seabed topography and the current model formed by eddy currents, two kinds of topography are set up for simulation experiments. And by comparing with other algorithms, repeated experiments can be concluded that the algorithm proposed in this paper has higher solution accuracy, faster convergence speed and stronger stability.
2026,48(2): 157-165 收稿日期:2025-5-28
DOI:10.3404/j.issn.1672-7649.2026.02.024
分类号:U675
基金项目:国家自然科学基金资助项目(62303157)
作者简介:王海龙(2002-),男,硕士研究生,研究方向为水下潜航器路径规划与运动控制
参考文献:
[1] PANDA M, DAS B, SUBUDHI B, et al. A comprehensive review of path planning algorithms for autonomous underwater vehicles[J]. International Journal of Automation and Computing, 2020, 17(3): 321-352.
[2] 孙玉山, 王力锋, 吴菁, 等. 智能水下机器人路径规划方法综述[J]. 舰船科学技术, 2020, 42(7): 1-7.
SUN Y S, WANG L F, WU J, et al. A review of path planning methods for intelligent underwater robots[J]. Ship Science and Technology, 2020, 42(7): 1-7.
[3] LI Y, MA T, CHEN P, et al. Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation[J]. Ocean Engineering, 2017, 133: 107-115.
[4] CAO X, SUN C. Multi-AUV cooperative target hunting based on improved potential field in underwater environment[C]//2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2018: 118-122.
[5] HAO K, ZHAO J, LI Z, et al. Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm[J]. Ocean Engineering, 2022, 263: 112421.
[6] 吕诗为, 朱迎谷, 卢倪斌, 等. 基于改进粒子群算法的水下机器人路径规划研究[J]. 控制与信息技术, 2023(6): 58-64.
LV S W, ZHU Y G, LU N B, et al. Research on path planning of underwater robot based on improved particle swarm algorithm[J]. Control and Information Technology, 2023(6): 58-64.
[7] GUO S, CHEN M, PANG W. Path planning for autonomous underwater vehicles based on an improved artificial jellyfish search algorithm in multi-obstacle ocean current environment[J]. IEEE Access, 2023, 11: 31010-31023.
[8] YAN Z, ZHANG J, ZENG J, et al. Three-dimensional path planning for autonomous underwater vehicles based on a whale optimization algorithm[J]. Ocean Engineering, 2022, 250: 111070.
[9] MA Y N, GONG Y J, XIAO C F, et al. Path planning for autonomous underwater vehicles: an ant colony algorithm incorporating alarm pheromone[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 141-154.
[10] ZHU G, SHEN Z, LIU L, et al. AUV dynamic obstacle avoidance method based on improved PPO algorithm[J]. IEEE Access, 2022, 10: 121340-121351.
[11] GARAU B, ALVAREZ A, OLIVER G. Path planning of autonomous underwater vehicles in current fields with complex spatial variability: an A* approach[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005: 194–198.
[12] 张晓倩, 黄磊, 石雨婷, 等. 基于多目标优化的改进蚁群路径规划算法[J]. 现代制造工程, 2023(11): 40-46.
ZHANG X Q, HUANG L, SHI Y T, et al. Improved ant colony path planning algorithm based on multi-objective optimisation[J]. Modern Manufacturing Engineering, 2023(11): 40-46.
[13] 胡春磊, 章飞, 曾庆军. 基于多目标蚁群策略的AUV全局路径规划算法[J]. 传感器与微系统, 2020, 39(11): 107-109+113.
HU C L, ZHANG F, ZENG Q J. Global path planning algorithm for AUV based on multi-objective ant colony strategy[J]. Sensors and Microsystems, 2020, 39(11): 107-109+113.
[14] 单玉浩, 杨晓东, 吴兵. 基于改进蚁群算法的水下潜航器安全隐蔽航路规划研究[J]. 舰船科学技术, 2019, 41(13): 45-48+144.
SAN Y H, YANG X D, WU B. Research on safe and hidden route planning for underwater submarine vehicle based on improved ant colony algorithm[J]. Ship Science and Technology, 2019, 41(13): 45-48+144.
[15] 蒋强, 易春林, 张伟, 等. 基于蚁群算法的移动机器人多目标路径规划[J]. 计算机仿真, 2021, 38(2): 318-325.
JIANG Q, YI C L, ZHANG W, et al. Multi-objective path planning for mobile robots based on ant colony algorithm[J]. Computer Simulation, 2021, 38(2): 318-325.
[16] 姚绪梁, 王峰, 王景芳, 等. 不确定海流环境下水下机器人最优时间路径规划[J]. 控制理论与应用, 2020, 37(6): 1302-1310.
YAO X L, WANG F, WANG J F, et al. Optimal time path planning for underwater robots in uncertain current environments[J]. Control Theory and Applications, 2020, 37(6): 1302-1310.
[17] 温志文. 基于改进蚁群算法的UUV路径规划方法研究[D]. 北京: 中国舰船研究院, 2017.
[18] 蒲兴成, 冼文杰, 聂壮. 基于改进蚁群优化算法的AUV三维路径规划[J]. 智能系统学报, 2024, 19(3): 627-634.
PU X C, XIAN W J, NIE Z. Three-dimensional path planning for AUV based on improved ant colony optimisation algorithm[J]. Journal of Intelligent Systems, 2024, 19(3): 627-634.
[19] 牛秦玉, 董鑫炜, 傅垚. 基于蚁群算法启发式策略改进的AGV路径规划[J]. 计算机集成制造系统, 2025, 31(11): 4085–4095.
NIU Q Y, DONG X W, FU Y. AGV path planning based on heuristic strategy improvement of ant colony algorithm[J]. Computer Integrated Manufacturing Systems, 2025, 31(11): 4085–4095.
[20] GONG Y J, HUANG T, MA Y N, et al. MTrajPlanner: A multiple-trajectory planning algorithm for autonomous underwater vehicles[J]. IEEE Trans. on Intelligent Transportation Systems, 2023, 24(4): 3714-3727.
[21] 潘云伟, 李敏, 曾祥光, 等. 基于人工势场和改进强化学习的自主式水下潜航器避障和航迹规划[J]. 兵工学报, 2025, 46(4): 72–83.
PAN Y W, LI M, ZENG X G, et al. Obstacle avoidance and trajectory planning for AUV based on artificial potential field and improved reinforcement learning[J]. Journal of Military Engineering, 2025, 46(4): 72–83.
[22] HADSELL R, BAGNELL J A, HUBER D, et al. Accurate rough terrain estimation with space-carving kernels[C]//Proc. of the Robotics: Science and Systems, 2009.
[23] LIU R D, CHEN Z G, WANG Z J, et al. Intelligent path planning for auvs in dynamic environments: an eda-based learning fixed height histogram approach[J]. IEEE Access, 2019 (7): 185433-185446.
[24] ZENG Z, LAMMAS A, SAMMUT K, et al. Optimal path planning based on annular space decomposition for AUVs operating in a variable environment[C]//2012 IEEE/OES Autonomous Underwater Vehicles (AUV), 2012: 1–9.