文章标题:基于深度学习算法的船用高频电路工作状态检测研究
文章作者:何一芥, 王波
关 键 字:深度学习算法;船用高频电路;工作状态检测;非线性映射;高维内积空间;最优超球体
文章摘要:为了提升船用高频开关电源的运行可靠性,提出基于深度学习算法的船用高频电路工作状态检测方法。采集船用高频电路工作状态信号,作为深度受限波尔兹曼机的输入,深度受限波尔兹曼机利用2层受限玻尔兹曼机,通过2次非线性映射,提取船用高频电路工作状态特征。设置所提取的高频电路工作状态特征,作为支持向量数据描述方法的输入,将输入样本映射至高维内积空间,判定样本是否存在于高维内积空间的最优超球体内,检测船用高频电路工作状态为正常或异常状态。实验结果表明,该方法可以精准检测船用高频电路工作状态,满足船舶高频开关电源的运行可靠性需求。