针对货物围护系统破损时,海洋动载下外部条件对多孔隔热层破损的LNG储罐内部和多孔隔热层中的热质传递过程的影响,建立货物围护系统破损的LNG储罐模型。采用流体体积(VOF)法跟踪气液界面;采用Lee模型模拟了相变传热过程。分析晃荡频率和振幅,充液高度以及多孔隔热层的孔隙率对LNG热质传递过程的影响。结果表明,当晃荡频率接近储罐固有频率时,蒸发量最大,但对泄漏影响不明显;充液高度升高0.1 m,泄漏的低温LNG的质量增加9.6 g;多孔隔热层孔隙率每增加0.2,50 s时间内蒸汽产生量减少约15 g。研究结果对深入了解动载下多孔隔热层泄漏的船舶LNG储罐内热质传递过程和优化货物围护系统结构提供一定的理论指导。
A model of an LNG storage tank with a broken cargo containment system was developed to address the effects of external conditions under oceanic dynamic loading on the heat mass transfer process inside and in the porous insulation layer of an LNG storage tank with a broken cargo containment system. The gas-liquid interface was tracked using the volume of fluid (VOF) method; the phase change heat transfer process was simulated using the Lee model. The effects of the shaking frequency and amplitude, the filling height and the porosity of the porous insulation layer on the LNG heat and mass transfer process were analysed. The results show that when the shaking frequency is close to the intrinsic frequency of the tank, the evaporation volume is the largest, but the effect on the leakage is not obvious; when the filling height is increased by 0.1 m, the mass of the leaking low-temperature LNG increases by 9.6 g, for every increase of the porosity of the porous insulation layer by 0.2, the amount of vapor produced decreases by about 15 g in a time period of 50 s. The results of this study are useful for the in-depth understanding of the heat transfer process and optimization of cargo enclosure system structure in the ship's LNG tanks with leakage of the porous insulation layer under dynamic loading. process and optimization of cargo enclosure system structure.
2025,47(13): 18-24 收稿日期:2024-9-18
DOI:10.3404/j.issn.1672-7649.2025.13.004
分类号:U667
基金项目:上海市自然科学基金资助项目(23ZR1426300)
作者简介:孙建中(1998-),男,硕士研究生,研究方向为多孔介质传热传质
参考文献:
[1] FERRÍN J L, PÉREZ-PÉREZ L J. Numerical simulation of natural convection and boil-off in a small size pressurized LNG storage tank[J]. Computers & Chemical Engineering, 2020, 138: 106840.
[2] LEE H B, PARK B J, RHEE S H, et al. Liquefied natural gas flow in the insulation wall of a cargo containment system and its evaporation[J]. Applied Thermal Engineering, 2011, 31(14-15): 2605-2615.
[3] CHEN H, YANG G, WU J. A multi-zone thermodynamic model for predicting LNG ageing in large cryogenic tanks[J]. Energy, Elsevier BV, 2023, 283: 128503.
[4] LIN Y, YE C, YU Y, et al. An approach to estimating the boil-off rate of LNG in type C independent tank for floating storage and regasification unit under different filling ratio[J]. Applied Thermal Engineering, 2018, 135: 463–471.
[5] JEON G M, PARK J C, KIM J W, et al. Experimental and numerical investigation of change in boil-off gas and thermodynamic characteristics according to filling ratio in a C-type cryogenic liquid fuel tank[J]. Energy, 2022, 255: 124530.
[6] LEE J H, KIM Y J, HWANG S. Computational study of LNG evaporation and heat diffusion through a LNG cargo tank membrane[J]. Ocean Engineering, 2015, 106: 77-86.
[7] CHOI S W, KIM H S, LEE W I. Analysis of leaked LNG flow and consequent thermal effect for safety in LNG cargo containment system[J]. Ocean Engineering, 2016, 113: 276-294.
[8] LEE W H. Pressure iteration scheme for two-phase flow modeling[C]// Veziroglu, T N. Multiphase Transport: Fundamentals, Reactor Safety, Applications. Miami Beach, FL. 1980.
[9] 钱希鸿, 陈威. 船舶LNG储槽晃荡热动响应特性分析[J]. 舰船科学技术, 2020, 42(15): 82-87.
QIAN X H, CHEN W. Thermodynamic response analysis of sloshing ship in marine LNG storage tank[J]. Ship Science and Technology, 2020, 42(15): 82-87.
[10] GROTLE E L, ÆSØY V. Dynamic modelling of the thermal response enhanced by sloshing in marine LNG fuel tanks[J]. Applied Thermal Engineering, 2018, 135: 512-520.
[11] GROTLE E, ÆSØY V. Numerical simulations of sloshing and the thermodynamic response due to mixing[J]. Energies, 2017, 10(9): 1338.
[12] 戴经武. 全压式液化气船设计[J]. 船舶, 1993(1): 1-10+18.