Mark Ⅲ型LNG船围护系统,其结构是支撑液舱及隔绝环境与液舱温度交换的主体结构,因此其结构安全是最为关键的问题之一。本文流场采用CFD法、结构场采用有限元法构建流固耦合数值计算模型,研究流固耦合效应对砰击载荷的时空分布特性影响,以及结构的可能失效模式。研究结果表明,在波纹节中间位置且迎浪方向的平区附近,刚性与弹性围护系统的砰击载荷均有明显的冲击特征,受流固耦合效应影响,弹性围护系统对应的砰击载荷轮廓中存在较多波动的次峰;在给定波浪条件下,水槽内的冲击压力达到最大时,弹性围护系统结构的主要变形发生在顶层合板及首层聚氨酯泡沫隔热层上,而最大应力响应发生在靠近波纹节附近。
The structure of Mark III LNG carrier containment system is the main structure to support the liquid tank and isolate the temperature exchange between the environment and the liquid tank, so its structural safety is one of the most critical issues. In this paper, the flow field and the structural field adopt CFD method and finite element method to construct the fluid-solid coupling numerical calculation model, respectively. The influence of fluid-solid coupling effect on the spatial and temporal distribution characteristics of slamming load and the possible failure mode of the structure are studied. The results show that the slamming loads of the rigid and elastic containment systems have obvious impact characteristics near the flat area in the middle of the corrugated joint and the wave direction. Affected by the fluid-solid coupling effect, there are many secondary peaks in the slamming load profile corresponding to the elastic containment system. Under the given wave conditions, when the impact pressure in the tank reaches the maximum, the main deformation of the elastic containment system structure occurs on the top plate and the first layer of polyurethane foam insulation layer, and the maximum stress response occurs near the corrugated section.
2025,47(13): 25-31 收稿日期:2024-10-16
DOI:10.3404/j.issn.1672-7649.2025.13.005
分类号:U661.1
基金项目:江苏海洋大学科研启动基金项目(KQ19045)
作者简介:丁雨涵(2000-),女,硕士研究生,研究方向为船舶流体力学
参考文献:
[1] BALCOMBE P, STAFFELL L, KERDAN I G, et al. How can LNG-fuelled ships meet decarbonisation targets an environmental and economic analysis[J]. Energy, 2021, 227: 120462.
[2] 罗秋明, 沈歆, 丁仕风, 等. 基于多载荷联合作用的LNG船泵塔结构建模与强度分析[J]. 船舶工程, 2024, 46(6): 67-74+82.
[3] 张济, 刘在良, 何海华, 等. 大型LNG动力船液舱晃荡耦合作用下运动响应计算[J]. 舰船科学技术, 2024, 46(5): 1-5.
ZHANG J, LIU Z L, HE H H, et al. Motion response calculation of large LNG powered ship under sloshing coupling[J]. Ship Science and Technology, 2024, 46(5): 1-5.
[4] 裴廷瑞. 晃荡荷载作用下FLNG液舱围护系统的可靠性分析与优化设计研究[D]. 哈尔滨: 黑龙江科技大学, 2022.
[5] JUNG J H, YOON H S, LEE C Y. Effect of natural frequency modes on sloshing phenomenon in a rectangular tank[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(3): 580-594.
[6] 张文海. LNG船历史事故研究[J]. 船舶, 2011, 22(4): 1-5.
[7] YOU R, HE G H, WANG J D, et al. CIP based analysis on strongly nonlinear interaction between solitary wave and submerged flat plate[J]. Ocean engineering, 2019, 176: 211-221.
[8] 石晓, 蒋勤, 钟振宇, 等. 波浪对水平板冲击作用水气二相流数值模拟研究[J/OL]. 力学学报, 1-10[2024-10-15].
[9] 张友林, 唐振远, 万德成, 等. 用MPS方法数值分析孤立波与平板相互作用问题[J] 水动力学研究与进展(A辑), 2016, 31(4): 395-401.
[10] 王佳东. 孤立波与板式结构物相互作用的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[11] PILLON B, MARHEM M, LECLERE G, et al. Numerical approach for structural assessment of LNG containment system [C] // Proceedings of the Nineteenth (2009) International Offshore and Polar Engineering Conference, 21-26 June, 2009, Osaka, Japan.
[12] ARSWENDY A, MOAN T. Strength and stifiness assessment of an LNG containment system-Crushing and buckling failure analysis of plywood components[J]. Engineering Failure Analysis. 2015, 48247-258.
[13] 刘婷婷, 阮诗伦, 尹江洲, 等. 浮式液化天然气液货围护系统的失效模式分析[J]. 海洋工程装备与技术, 2014, 1(1): 50-54.
[14] 骆松. LNG薄膜型液舱围护系统设计与分析研究[D]. 大连: 大连理工大学, 2015.
[15] 徐家晨, 黄隽, 薛鸿祥, 等. 薄膜型LNG船NO96围护系统强度分析的建模方法[J]. 船海工程, 2022, 51(4): 1-5.