为探索集装箱船在航行过程中,不同堆垛方案对航行风阻的影响规律,基于某型装箱数的典型非满载工况,在保证装箱数量相同的情况下,设计了4种新型堆垛模式,采用CFD方法评估了总计5种堆垛模式下所受风载荷之间的差异。研究表明,艏部外形呈流线型布置的堆垛模式相较原始堆垛模式迎风阻力降低21.24%。集装箱船在装载过程中应避免艏部有较大的形状突变,艏部至中部应呈流线型或者阶梯型布置。甲板以上集装箱的形心尽量向船中靠近,在集装箱非满载情况下,应让集装箱靠近船中堆垛,以减少船舶所受风致横向力和艏摇力矩。
In order to explore the influence of different stacking schemes on the navigation wind resistance of container ships during navigation, four new stacking modes were designed based on the typical non-full-load conditions of a certain type of container number, and four new stacking modes were designed to ensure the same number of containers. The CFD method was used to evaluate the difference between the wind loads under a total of five stacking modes. The research shows that the wind resistance of the stacking mode with streamlined bow shape is 21.24 % lower than that of the original stacking mode. Container ships should avoid large shape changes in the bow during loading, and the bow to the middle should be streamlined or stepped. The centroid of the container above the deck should be as close as possible to the swell. When the container is not fully loaded, the container should be stacked close to the ship to reduce the wind-induced lateral force and yaw moment of the ship.
2025,47(13): 40-45 收稿日期:2024-8-27
DOI:10.3404/j.issn.1672-7649.2025.13.008
分类号:U674.381
基金项目:江苏省自然科学基金资助项目(BK20231255);河南省交通运输科技计划项目(2022-6-2)
作者简介:吴炳良(1984-),男,硕士,高级工程师,研究方向为船舶总体设计
参考文献:
[1] 王志浩, 赵天翔, 宋强, 等. 船舶风载荷的研究进展和展望综述[J]. 科技风, 2020(28): 189-190.
[2] 蔡荣泉. 关于船舶CFD的现状和一些认识[J]. 船舶, 2002(1): 29-37.
[3] 蒋汝斌. 半潜式钻井服务支持平台风载荷数值模拟计算[D]. 镇江: 江苏科技大学, 2016.
[4] HSU T H. Applied offshore structural engineering [M]. Houston: Gulf Publishing Company, 1984.
[5] FUJIWARA T, UENO M, IKEDA Y. A new estimation method of wind forces and moments acting on the basis of physical component models[C]// Journal of the Japan Society of Naval Architects and Ocean Engineers. Japan: The Japan Society of Naval Architects and Ocean Engineers (JASNAOE), 2005.
[6] FUJIWARA T, TSUKADA Y, KITAMURA F, et al. Experimental investigation and estimation on wind forces for a container ship[C]// Proceedings of the Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan: International Society of Offshore and Polar Engineers, 2009.
[7] FUJIWARA T, YUKAWA K, SATO H, et al. Wind Effect estimation in side by side offloading operation for FLNG and LNG carrier ships[C]// Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering(OMAE 2012). Rio de Janeiro, Brazil: Ocean, Offshore and Arctic Engineering Division, 2012.
[8] ISHERWOOD R M. Wind resistance of merchant ships[J]. Trnsactions of the Royal Institution of Naval Architects, 1973, 115(1): 327-338.
[9] BLENDERMANN W. Parameter identification of wind loads on ships[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(3): 339-351.
[10] Oil Companies International Marine Forum(OCIMF). Prediction of wind loads and current loads on VLCCs (2nd edition)[R]. England: Witherby Publishing Group Ltd, 1994.
[11] HADDARA M R, SOARES C G. Wind loads on marine structures[J]. Marine Structures, 1999, 12(3): 199-209.
[12] 赖祥华, 邵汉东, 蔡辉华. 基于CFD的1100 TEU集装箱船风载荷计算分析[J]. 船舶标准化工程师, 2018, 51(3): 75-80.
[13] 许辉, 陈作钢. 散货船风载荷数值模拟[J]. 船舶工程, 2021, 43(5): 53-59.
[14] 张亚晖, 顾海军, 陆晟, 等. 集装箱起重机运输船风载荷计算研究[J]. 中国造船, 2021, 62(2): 255-266.
[15] 吴雷振. 船舶风载荷经验公式与计算流体力学方法的对比研究[D]. 大连: 大连海事大学, 2019.
[16] 孙华伟, 常文田, 李宏伟, 等. 集装箱船上层建筑气动干扰特性与风阻优化[J]. 哈尔滨工程大学学报, 2024, 45(4): 651-658.
[17] 蔡文山, 马卫星, 邓锐, 等. 不同集装箱布置下船舶风载荷数值仿真[J]. 中国航海, 2018, 41(2): 91-96.
[18] RUI D, YU-QUAN W , ZHI-JIE S, et al. Analysis of the characteristics of the spectral orthogonal decomposed flow fields: Numerical and experimental investigations of the air flow field around a simplified container ship model[J]. Ocean Engineering, 2022, 266: 4.