为研究高强钢厚板的焊接残余应力,针对自升式平台桩腿主弦管-齿条焊接残余应力开展数值研究,采用二维热弹塑性有限元法预测了焊缝附近残余应力分布。通过与盲孔法测量值进行对比,验证了数值方法的可靠性。由于大型复杂构件焊接涉及多层多道焊,为了提高计算效率,在数值模拟中通常采用合并焊道的方法。本文讨论了焊道合并方式对残余应力分布的影响,提出了合理的焊道合并策略,在保证精度的同时显著提高了计算效率,具有一定的工程应用价值。
In order to study the welding residual stresses of high-strength steel thick plates, a numerical investigation on the welding residual stresses of the chord-rack weld in the jack-up platform leg was carried out. The two-dimensional thermal elastic-plastic finite element method was used to predict the distribution of welding residual stresses near the weld. By comparing the measured results with the hole-drilling method, the numerical method was verified. Since welding of large and complex components involves multi-pass welding, the lumped-pass method was generally used in numerical simulation to improve the calculation efficiency. The influence of lumped-pass patterns on residual stresses distribution was discussed, and a reasonable lumped-pass strategy was proposed, which can significantly improve the calculation efficiency while ensuring the accuracy, and have certain engineering application value.
2025,47(13): 78-84 收稿日期:2024-9-20
DOI:10.3404/j.issn.1672-7649.2025.13.014
分类号:U671
基金项目:国家自然科学基金资助项目(52101350)
作者简介:常岩松(1968-),男,高级工程师,研究方向为海上自升平台主弦管桩腿材料研发
参考文献:
[1] 姚相林, 周宏. 基于Ansys的Q235A焊接数值模拟[J]. 舰船科学技术, 2022, 44(13): 85-89.
YAO X L, ZHOU H. Numerical simulation of Q235A welding based on Ansys[J]. Ship Science and Technology, 2022, 44(13): 85-89.
[2] 李陈峰, 金腾龙, 刘德怀, 等. 铝合金加筋板焊接温度场和残余应力数值模拟[J]. 舰船科学技术, 2021, 43(23): 71-75.
LI C F, JIN T L, LIU D H, et al. Numerical investigation on welding temperature field and residual stresses of stiffened aluminum plates[J]. Ship Science and Technology, 2021, 43(23): 71-75.
[3] TAN L, ZHANG J X, ZHUANG D, et al. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding[J]. Nuclear Engineering and Design, 2014, 273: 47-57.
[4] 胡兴, 戴培元, 张超华, 等. 合并焊道法对SUS304不锈钢平板对接接头焊接残余应力计算精度和效率的影响[J]. 机械工程学报, 2019, 55(12): 72-82.
[5] 赵宏权, 邹家生, 刘川, 等. JU2000E自升式钻井平台桩腿K型节点焊接残余应力分析[J]. 船舶工程, 2020, 42(7): 107-115.
[6] KEPPAS L K, WIMPORY R C, KATSAREAS D E, et al. Combination of simulation and experiment in designing repair weld strategies: A feasibility study[J]. Nuclear Engineering and Design, 2010, 240(10): 2897-2906.
[7] 中国国家标准化管理委员会. 金属材料 残余应力测定 钻孔应变法 [S]. 北京: 中国标准出版社, 2014.
[8] 李争. 海上石油平台桩腿齿条焊接应力变形热弹塑性有限元分析 [D]. 天津: 天津大学, 2010.
[9] 孟晓辉. 液压支架顶梁焊接变形控制研究 [D]. 江苏: 江苏科技大学, 2012.
[10] 卢梦丹. Q690高强钢焊接截面热-结构耦合分析及纵向残余应力分布模型研究 [D]. 郑州: 河南工业大学, 2024.
[11] 骆文泽, 成慧梅, 刘红艳, 等. 高强钢Q960E对接接头残余应力与焊接变形的数值模拟[J]. 中国机械工程, 2023, 34(17): 2095-2105+2141.
[12] KYRIAKONGONAS A P, PAPAZOGLOU V J, PANTELIS D I. Complete investigation of austenitic stainless steel multi-pass welding[J]. Ships and Offshore Structures, 2011, 6(1-2): 127-144.
[13] GARCíA GARCíA V, CAMACHO ARRIAGA J C, REYES CALDERóN F. A simplified elliptic paraboloid heat source model for autogenous GTAW process[J]. International Journal of Heat and Mass Transfer, 2016, 100: 536-549.
[14] AARBOGH H M, HAMIDE M, FJæR H G, et al. Experimental validation of finite element codes for welding deformations[J]. Journal of Materials Processing Technology, 2010, 210(13): 1681-1689.
[15] 石红昌, 黄安明, 刘兴, 等. 超厚钢板对接焊接头残余应力数值模拟研究[J]. 四川建筑, 2023, 43(4): 260-263.