为了提高涡轮冷却叶片的结构设计效率,采用UG OPEN API与特征参数相结合的方法,建立涡轮叶片典型冷却结构的参数化设计模型。通过定义壁厚、隔板特征参数实现内外型的参数化设计,基于此模型,通过定义气膜孔、扰流肋、劈缝、扰流柱、旋流冷却结构的特征参数进行编程输出特征形状的点坐标和方向等参数。通过UG OPEN API实现特征结构的快速三维建模。设计人员通过参数修改,即可快速地进行三维建模,提高了设计效率,大大缩短了结构设计周期。
In order to improve the structural design efficiency of turbine cooling blades, a parameterized design technique for typical cooling structures of turbine blades was established by combining UG OPEN API with characteristic parameters. By defining the wall thickness and partition characteristic parameters, the parameterized design of the inner and outer shapes was achieved. Based on this model, the point coordinates and directions of the characteristic shapes were programmed and output by defining the characteristic parameters of the film cooling holes, ribs, trailing edge slot, pin-fin, and vortex cooling structures. Rapid 3D modeling of feature structure was realized by UG OPEN API. Designers can quickly perform 3D modeling by modifying parameters, improving design efficiency and greatly shortening the structural design cycle.
2025,47(13): 100-106 收稿日期:2024-9-26
DOI:10.3404/j.issn.1672-7649.2025.13.018
分类号:U662
基金项目:国家自然科学基金“叶企孙”科学基金资助项目(U2241251);中船集团自立科技项目(202109Z)
作者简介:孙彦博(1992-),男,硕士,工程师,研究方向为燃气轮机研发设计
参考文献:
[1] 曹玉璋, 陶智, 徐国强, 等. 航空发动机传热学[M]. 北京: 北京航天航空大学出版社, 2005.
[2] 刘剑, 陈亚, 王开拓, 等. 涡轮叶片参数化设计与优化[J]. 汽轮机技术, 2022, 6(3): 167-170.
[3] ZHANG G H, ZHU R, XIE G N, et al. Optimization of cooling structures in gas turbines: A review[J]. Chinese Journal of Aeronautics, 2022, 35(6): 18-46.
[4] 董子豫. 燃气透平叶片冷却结构的参数化设计优化研究[D]. 南京: 东南大学, 2023.
[5] 宋洋, 王威, 耿瑞, 等. 基于涡轮导叶复合结构设计平台的叶片强度分析技术[J]. 汽轮机技术, 2023, 65(2): 81-86.
[6] CHI Z R, RENG J, JIANG H D. Coupled aerothermodynamics optimization for the cooling system of a turbine vane[J]. Journal of Turbomachinery, 2014, 136(5): 051008.
[7] CHI Z R, WANG S T, REN J, et al. Multi-dimensional platform for cooling design of air-cooled turbine blades[C]// ASME Turbo Expo 2012: Power for Land, Sea and Air, Copenhagen, Denmark, 2012.
[8] 韩绪军. 涡轮叶片冷却结构参数化及带肋通道优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[9] 史振. 燃气涡轮叶片复合冷却结构参数化设计与数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[10] 杜晓东. 燃气涡轮叶片尾缘冷却结构的参数化设计及数值分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[11] 徐虎, 王佳宾, 董平. 基于参数化造型的气膜冷却优化方法[J]. 热能动力工程, 2021, 36(10): 63-69.
[12] 虞跨海, 杨茜, 罗昌金, 等. 涡轮叶片二维冷却结构参数化设计技术研究[J]. 燃气涡轮试验与研究, 2013, 26(1): 12-15,29.
[13] 虞跨海, 李立州, 岳珠峰. 基于解析及特征造型的涡轮冷却叶片参数化设计[J]. 推进技术, 2007, 28(6): 637-656.
[14] CHYU M K, SIW S C. Recent advances of internal cooling techniques for gas turbine airfoils[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021008.