针对舰船外部磁场推算中积分方程法系数矩阵的病态问题,结合磁本构方程和预处理精细积分法,提出基于预处理精细积分法的舰船外部磁场推算方法。首先,分析积分方程法中系数矩阵病态问题,通过加入磁本构方程降低系数矩阵病态程度;其次,基于预处理精细积分法,进一步优化磁场逆推算求解过程中的病态问题;最后,通过试验实测数据与仿真计算结果对比,验证方法的有效性。结果显示,对比同类算法,该方法推算结果与实测数据的均方根误差降至6.81%;同时通过多个仿真模型,验证了该方法在优化系数矩阵病态问题上的通用性。依据试验与仿真结果,基于预处理精细积分法的舰船外部磁场推算方法能够有效优化积分方程法系数矩阵的病态问题,进一步提升舰船外部磁场推算的精确性。
To address the ill-conditioned problem of the coefficient matrix in the integral equation method for calculating the external magnetic field of ships, this paper proposes a method based on the preconditioned precise integration method, combining magnetic constitutive equations and preconditioning techniques. First, the ill-conditioning problem of the coefficient matrix in the integral equation method is analyzed, and the magnetic constitutive equation is introduced to reduce the degree of ill-conditioning in the coefficient matrix. Next, the preconditioned precise integration method is applied to further improve the ill-conditioning issues in the magnetic field inverse calculation process. Finally, the optimization effectiveness of the method is verified by comparing experimental data with simulation results. The results show that compared to similar algorithms, the RMSE(root mean square error) between the calculated and measured data is reduced to 6.81%. Moreover, multiple simulation models verify the method's general effectiveness in addressing the ill-conditioned matrix problem. Based on the experimental and simulation results, the ship's external magnetic field calculation method based on the preconditioned precise integration method can effectively solve the ill-conditioned problem of the coefficient matrix in the integral equation method, thereby improving the accuracy of the external magnetic field calculation for ships.
2025,47(13): 120-125 收稿日期:2024-9-13
DOI:10.3404/j.issn.1672-7649.2025.13.021
分类号:U665.18
作者简介:茆福源(1997-),男,硕士研究生,研究方向为舰船磁场推算
参考文献:
[1] 周国华, 肖昌汉, 刘胜道, 等. 船舶磁场的面磁荷建模方法及稳定性分析[J]. 哈尔滨工程大学学报, 2010, 31(5): 553-558.
[2] JAKUBIUK K , ZIMNY P , WOLSZYN M. Multidipoles model of ship's magnetic field[C]//15th International Symposium on Applied Electromagnetics and Mechanics, 2012.
[3] MODI A , KAZI F . Magnetic signature prediction for efficient degaussing of naval vessels[J]. IEEE Transactions on Magnetics, 2020, 99.
[4] 何保委, 刘胜道, 赵文春, 等. 改进的内外映射法推算潜艇外部感应磁场[J]. 舰船科学技术, 2020, 42(11): 172-175.
HE B W, LIU S D, ZHAO W C, et al. Extrapolation of submarine's external induced magnetic field by improved internal and external reflection method[J]. Ship Science and Technology, 2020, 42(11): 172-175.
[5] 赵文春, 欧阳剑锋, 刘胜道, 等. 舰船上方拱顶磁场等效面磁荷推算[J]. 中国舰船研究, 2022, 17(6): 182-186.
[6] 刘辉, 钟炀, 吴桐, 等. 基于面磁矩分布的潜艇磁场计算[J]. 舰船科学技术, 2023, 45(6): 28-32.
LIU H, ZHONG Y, WU T, et al. Submarine magnetic field calculation based on surface magnetic moment distribution.[J]. Ship Science and Technology, 2023, 45(6): 28-32.
[7] OLIVIER, CHADEBEC, JEAN-LOUIS, et al. Magnetization identification problem Illustration of an effective approach [J]. COMPEL, 2004, 70(2): 518-530.
[8] 唐申生, 刘胜道, 周耀忠. 舰艇磁场推算中边界元法的改进[J]. 海军工程大学学报, 2011, 23(1): 47-50.
[9] RIOUX-DAMIDAU F , BANDELIER B . A fast and precise determination of the static magnetic field in the presence of thin iron shells[J]. Magnetics IEEE Transactions on, 1995, 31(6): 3491-3493.
[10] NEYMAN V Y , MARKOV A V . Comparison of finite element modelling of a magnetic field by the example of solving the magnetostatics problem[J]. Journal of Physics: Conference Series, 2020, 1661(1): 012067.
[11] 左超, 耿攀, 夏建超, 等. 基于有限元边界元法的舰船开域空间静磁计算研究[J]. 船电技术, 2015, 35(4): 26-29.
[12] 周家新, 陈建勇, 单志超, 等. 航空磁探中潜艇磁场建模方法分析[J]. 海军航空工程学院学报, 2017, 32(1): 143-148.
[13] 何保委, 张俊洪, 刘胜道, 等. 利用舰船内部磁场的反演建模方法[J]. 国防科技大学学报, 2024, 46(4): 184-190.
[14] 富明慧, 李勇息. 求解病态线性方程组的预处理精细积分法[J]. 应用数学和力学, 2018, 39(4): 462-469.
[15] 刘李楠, 韩庆伟, 贾π, 等. 基于超松弛预处理的精细积迭代反演算法[J]. 数学的实践与认识, 2018, 48(13): 132-137.
[16] 王慧蓉, 郝强, 贾武艳. 求解病态线性方程组的精细积分单参数迭代法[J]. 山西师范大学学报(自然科学版), 2022, 36(3): 16-19.
[17] DEGAUQUE J . Magnétisme et matériaux magnétiques : introduction[J]. Journal De Physique IV, 1992, 02(C3): C3-1-C3-13.
[18] VAJARGAH B , MORADI M . Diagonal scaling of Ill-Conditioned matrixes by genetic algorithm[J]. Journal of Applied Mathematics, Statistics and Informatics, 2012, 8(1): 49-53.