为优化水平轴潮流能水轮机的阵列布局,本文采用计算流体力学(CFD)方法,研究2个串联布置的水平轴水轮机的纵向间距和叶尖速比对功率系数、推力系数及尾流的影响。结果显示:随着叶尖速比的增加,下游水轮机的功率系数先增大后减小,推力系数单调增加,且功率系数和推力系数随着纵向间距的增加而增大。尾流速度分析表明,叶尖速比的增加有助于加速下游水轮机尾流速度和湍动能的恢复。建议在布置串联水轮机组时,纵向间距应大于10倍叶轮直径,这将有助于提高水轮机阵列的发电效率和稳定性。
In order to optimize the array layout of horizontal axis tidal energy turbines, this paper adopts the computational fluid dynamics (CFD) method to study the effects of longitudinal spacing and blade tip speed ratio on power coefficient, thrust coefficient and wake flow of two horizontal axis turbines arranged in series. The results show that the power coefficient of the downstream turbine increases and then decreases, the thrust coefficient increases monotonically, and the power coefficient and thrust coefficient increase with the increase of the longitudinal spacing as the blade tip speed ratio increases. The wake velocity analysis shows that the increase of the tip speed ratio helps to accelerate the recovery of wake velocity and turbulent kinetic energy of the downstream turbine. It is recommended that the longitudinal spacing should be greater than 10 times the impeller diameter when arranging a tandem turbine set, which will help improve the power generation efficiency and stability of the turbine array.
2025,47(13): 132-137 收稿日期:2024-9-4
DOI:10.3404/j.issn.1672-7649.2025.13.023
分类号:TM73
基金项目:北京市教育委员会科研计划项目资助(KZ20231001720)
作者简介:李思睿(1999-),女,硕士研究生,研究方向为潮流能
参考文献:
[1] ZUPONE G L, AMELIO M, BARBARELLI S, et al. Lcoe evaluation for a tidal kinetic self balancing turbine: Case study and comparison[J]. Applied Energy, 2017, 185: 1292-1302.
[2] LEWIS M, NEILL S P, ROBINS P E, et al. Resource assessment for future generations of tidal-stream energy arrays[J]. Energy, 2015, 83: 403-415.
[3] 张之阳, 王晓航, 刘葳兴, 等. 水平轴潮流能叶轮设计与水动力特性分析[J]. 舰船科学技术, 2021, 43(1): 78-82+88.
ZHANG Z Y, WANG X H, LIU W X, et al. Design and hydrodynamic performance analysis of horizontal axis tidal current turbine[J]. Ship Science and Technology, 2021, 43(1): 78-82+88.
[4] MYCEK P, GAURIER B, GERMAIN G, et al. Numerical and experimental study of the interaction between two marine current turbines[J]. International Journal of Marine Energy, 2013, 1: 70-83.
[5] MORANDI B, DI FELICE F, COSTANZO M, et al. Experimental investigation of the near wake of a horizontal axis tidal current turbine[J]. International Journal of Marine Energy, 2016, 14: 229-247.
[6] O’DOHERTY D M, MASON-JONES A, MORRIS C, et al. Interaction of marine turbines in close proximity[C]//9th European Wave and Tidal Energy Conference (EWTEC). Southampton, UK. 2011: 10-14.
[7] 李岩伟, 郑源, 张玉全, 等. 潮流能水轮机双机组单列布置数值模拟研究[J]. 水电能源科学, 2021, 39(12): 188-191+163.
LI Y W, ZHENG Y, ZHANG Y Q, et al. Numerical simulation studyon singe-row arrangement dual-unitsof tidal current turbine[J]. Water Resources and Power, 2021, 39(12): 188-191+163.
[8] 谢永和, 李广年, 张兆德. 竖轴潮流能水轮机组排列规律试验研究[J]. 太阳能学报, 2017, 38(2): 537-542.
XIE Y H, LI G N, ZHANG Z D. Experimentalanalysis of arrangement rule for verticalaxis tidal current turbine[J]. Acta Energiae Solaris Sinica, 2017, 38(2): 537-542.
[9] ZHANG L, WANG S, SHENG Q, et al. The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine[J]. Renewable Energy, 2015, 74: 796-802.
[10] 荆丰梅. 一种新型漂浮式潮流能装置水动力研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.