智能弹药是近年来迅速发展的一种飞行器,集侦察、打击、评估等多功能于一体,使用成本低、作战部署灵活、探测拦截难,显著提升了对目标的打击精度与能力,成为俄乌冲突中的重要武器,引起各军事强国的高度重视。本文从智能弹药的3个飞行阶段入手,综合考虑水面典型目标速度快、隐蔽性强、移动无规律的特点,梳理出智能弹药完成水面典型目标识别跟踪任务的关键技术,包括智能弹药目标识别技术、智能弹药目标跟踪技术和智能弹药飞行制导技术,分析了当前水面典型目标识别跟踪场景下的智能弹药技术研究应当关注的若干发展方向,以期为智能弹药水面典型目标识别跟踪体系研究提供技术参考与支撑。
Intelligent ammunition is an aircraft that has rapidly developed in recent years. Intelligent ammunition integrates multiple functions such as reconnaissance, attack, and assessment. It has low usage costs, flexible combat deployment, and is difficult to detect and intercept. It has significantly enhanced the strike accuracy and ability against targets and has become important weapons in the Russia-Ukraine conflict, attracting great attention from major military powers. This paper starts with the three flight stages of intelligent ammunition, comprehensively considering the characteristics of fast speed, strong concealment, and irregular movement of typical targets on the water surface. It summarizes the key technologies for intelligent ammunition to complete the task of identifying and tracking typical targets on the water surface, including intelligent ammunition target recognition technology, intelligent ammunition target tracking technology, and intelligent ammunition flight guidance technology. It analyzes several development directions that should be paid attention to in the current research of intelligent ammunition technology in the context of identifying and tracking typical targets on the water surface, in order to provide technical reference and support for the research of intelligent ammunition water surface typical target recognition and tracking system.
2025,47(20): 14-20 收稿日期:2025-1-17
DOI:10.3404/j.issn.1672-7649.2025.20.003
分类号:U674
作者简介:陈延伟(1971-),男,硕士,研究员,研究方向为武器发射技术
参考文献:
[1] HUGHES R. Loitering with intent[J]. Jane’s International Defense Review: IHS Jane’s International Defense Review, 2016(49): 48-53.
[2] 刘箴, 吴馨远, 许洁心. 国外巡飞弹发展现状及趋势分析[J]. 弹箭与制导学报, 2024, 44(2): 42-50.
LIU Z, WU X Y, XU J X. Analysis of the current status and trends of foreign loitering munitions development[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2024, 44(2): 42-50.
[3] 李超, 李浩, 苏号然. 国外小型巡飞弹发展分析及其预警系统应对策略研究[J]. 空天防御, 2023, 6(3): 58-65.
LI C, LI H, SU H R. Research on the development analysis of foreign small loitering munitions and the coping strategies of their early warning system[J]. Aerospace Defense, 2023, 6(3): 58-65.
[4] 李辉, 方丹, 高伟伟, 等. 巡飞弹蜂群关键技术与战术构想研究[J]. 战术导弹技术, 2020(4): 58-63.
LI H, FANG D, GAO W W, et al. Research on the Key Technologies and Tactical Concepts of Loitering Munition Swarms[J]. Tactical Missile Technology, 2020(4): 58-63.
[5] 冯文韬, 黄超凡, 李欢丽等. 巡飞弹载动力电池应用现状及发展趋势[J]. 电源技术, 2023, 47(4): 426-429.
FENG W T, HUANG C F, LI H L, et al. Application status and development trend of power batteries for loitering munitions[J]. Chinese Journal of Power Sources, 2023, 47(4): 426-429.
[6] 臧晓京, 邢娅, 刘侃. 可随时提供火力支援的巡逻弹药[J]. 飞航导弹, 2008(4): 41-45.
[7] 毛嘉元, 刘峰, 韦振鹏. 跨介质集群轻小型巡飞弹关键技术与发展趋势[J]. 弹箭与制导学报, 2024, 44(3): 59-65.
MAO J Y, LIU F, WEI Z P. Key technologies and development trends of cross-medium cluster light and small loitering munitions[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2024, 44(3): 59-65.
[8] 朱昊天, 刘星, 马国军, 等. 基于区域封控扩展的巡飞弹集群航路规划改进方法[J]. 弹箭与制导学报, 2022, 42(4): 114-118.
ZHU H T, LIU X, MA G J, et al. Improved Route Planning Method for Loitering Munition Swarms Based on Extended Area Blockade[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(4): 114-118.
[9] NEWSWIRE P R. IWTSD and Mistral Inc. UVision Air Ltd. successfully complete testing of the MLAM-SF loitering aerial munition-HERO-120SF [N]. PR Newswire US. , 2021-11-09.
[10] KAHNJ. A. I. goes to war[J]. Fortune International(Europe), 2022, 185(2): 28-30.
[11] 曹成才, 黄炎焱, 孙鹏耀, 等. 面向巡飞弹编队的战前筹划任务分配方法[J]. 指挥控制与仿真, 2024, 46(3): 56-61.
CAO C C, HUANG Y Y, SUN P Y, et al. A task allocation method for pre-war planning of loitering munition formations[J]. Command Control & Simulation, 2024, 46(3): 56-61.
[12] 黄瑞, 高敏, 陈建辉. 轻小型巡飞弹及其关键技术浅析[J]. 飞航导弹, 2015(12): 16-19+24.
HUANG R, GAO M, CHEN J H. A brief analysis of light and small cruise missiles and their key technologies[J]. Aerospace Technology, 2015(12): 16-19+24.
[13] 申云磊, 高霄鹏. 无人艇的研究现状与进展[J]. 船电技术, 2018, 38(9): 7-10.
SHEN Y L, GAO X P. Research status and progress of unmanned surface vehicle[J]. Marine Electric & Electronic Engineering, 2018, 38(9): 7-10.
[14] 孙宝华, 王兴华, 高禹. 影响玻璃纤维/不饱和聚酯树脂复合材料透波性能因素的研究[J]. 纤维复合材料, 2002(2): 13-16.
[15] 闫广利. 基于深度学习的末敏弹多模复合探测信号识别研究[D]. 南京: 南京理工大学, 2021.
[16] 史铭森. 复杂背景下目标的激光脉冲波束散射特性及其应用[D]. 西安: 西安电子科技大学, 2021.
[17] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016.
[18] 宗方勇, 葛恩顺, 赵保全, 等. 巡飞弹弹翼展开结构模型设计[J]. 工业工程设计, 2023, 5(4): 100-104.
ZONG F Y, GE E S, ZHAO B Q, et al. Design of the deployment structure model for the wings of loitering munitions[J]. Industrial Engineering Design, 2023, 5(4): 100-104.