与传统的轴向螺旋桨水下航行器相比,仿生水下机器人具有更安静的驱动、更高的推进效率和更强的机动能力,仿生水下机器人正逐渐成为水下探测和作业的重要工具。仿生水下机器人依据其模仿对象不同,可分为仿鱼型、仿多足爬行动物型以及仿软体动物等类别,本文旨在综述仿生水下机器人的研究进展包括一些新型仿生水下机器人及其推进方式和未来发展趋势。已有研究表明,仿生水下机器人通过模拟水生生物的游动方式、感知机制和行为特性,展现出较传统水下设备更高的机动性、适应性和智能水平,具有重要的科研价值和巨大的实际应用潜力。
Compared with traditional axial propeller underwater vehicles, biomimetic underwater robots have quieter driving, higher propulsion efficiency, and stronger maneuverability. Biomimetic underwater robots are gradually becoming an important tool for underwater exploration and operations. Biomimetic underwater robots can be classified into fish like, multi legged reptile like, and mollusk like categories based on their imitation objects. This paper aims to review the research progress of biomimetic underwater robots, including some new biomimetic underwater robots, their propulsion methods, and future development trends. Existing research has shown that biomimetic underwater robots demonstrate higher maneuverability, adaptability, and intelligence levels than traditional underwater equipment by simulating the swimming patterns, perception mechanisms, and behavioral characteristics of aquatic organisms. They not only have important scientific research value, but also have enormous practical application potential.
2025,47(20): 21-30 收稿日期:2024-10-16
DOI:10.3404/j.issn.1672-7649.2025.20.004
分类号:U674.7;TP242
作者简介:王储(2001-),男,硕士,研究方向为潜水器设计及控制
参考文献:
[1] 王扬威, 王振龙, 李健. 仿生机器鱼研究进展及发展趋势[J]. 机械设计与研究, 2011, 27(2): 22-25+32.
[2] XU T, YU J, VONG C I., et al. Dynamic morphology and swimming properties of rotating miniature swimmers with soft tails[J]. Mechatronics, 2019, 24(3): 924-934.
[3] WANG R, S. WANG, Y. WANG, et al. Development and motion control of biomimetic underwater robots: a survey[J]. Systems, Man, and Cybernetics: Systems, 2022, 52(2): 833-844.
[4] 胡桥, 刘钰, 赵振轶, 等. 水下无人集群仿生人工侧线探测技术研究进展[J]. 水下无人系统学报, 2019, 27(2): 114-122.
[5] KIM S, SHIN K, HASHI S, et al. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator[J]. Bioinspiration Biomimetics, 2012, 7(3):13-16.
[6] 王睿, 王硕. 仿生机器鱼推进效率实验研究进展[J]. 系统科学与数学, 2016, 36(9): 1388-1396.
[7] 徐小军, 刘博龙, 潘迪博, 等. 水陆两栖仿生机器人的研究及应用[J]. 水下无人系统学报, 2023, 31(1): 143-151.
[8] 谢鹏, 孙国槐. 复杂附体结构仿生机器蟹水动力特性研究[J]. 舰船科学技术, 2024, 46(1): 35-41.
[9] 曹庆明. 鱼类游动的水动力学研究综述[C]//全国水动力学学术会议暨两岸船舶与海洋工程水动力学研讨会, 2008.
[10] LIU B , HAMMOND F L. Modular platform for the exploration of form-function relationships in soft swimming robots[C]//2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), 2020.
[11] VIDYARTHI P K, MUKHERJEE K, ROY B K. Fish-like robots and applications of sensor -a review[C]//2022 4th International Conference on Energy, Power and Environment (ICEPE), 2022.
[12] LILJEBACK P , MILLS R . Eelume: A flexible and subsea resident IMR vehicle[C]//OCEANS 2017 - Aberdeen, 2017.
[13] LIAO P , ZHANG S , SUN D. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism[J]. Bioinspiration & Biomimetics, 2018, 13(3): 17-32.
[14] CHEN L, BI S S, CAI Y R, et al. Design and hydrodynamic experiment research on novel biomimetic pectoral fins of a ray-inspired robotic fish[J]. Machines, 2022, 10(8): 606-608.
[15] CAO Y H, MA S M, CAO Y Z, et al. Similarity evaluation rule and motion posture optimization for amanta ray robot[J]. Journal of Marine Science and Engineering, 2022, 10(7): 908-912.
[16] CAO Y, MA S, XIE Y, et al. Parameter optimization of CPG network based on PSO for manta ray robot[C]//International Conference on Autonomous Unmanned Systems. Springer, Singapore, 2022.
[17] 南凯刚, 姜晟, 张进华, 等. 柔性胸鳍推进仿蝠鲼机器鱼CPG运动控制[J]. 水下无人系统学报, 2023, 31(2): 201-210.
[18] ZENG Y, HU Q, YIN S, et al. The ground motion dynamics analysis of a bionic amphibious robot with undulatory fins[C]//2021 IEEE International Conference on Real-time Computing and Robotics(RCAR), Xining, China: IEEE, 2021.
[19] 刘建国. 基于爬岩鳅运动学分析的仿生机器人研究[D]. 杭州: 浙江大学, 2019.
[20] LIN Z L, ZHENG W, ZHANG J H. Mudskipper-inspired amphibious robotic fish enhances locomotion performance by pectoral-caudal fins coordination [J]. Cell Reports Physical Science, 2023, 4(10): 15-20.
[21] BRRETT D S. Drag reduction in fish-like locomotion[J]. Fluid Mech, 1999, 392: 183-211.
[22] KANG S D , ANDERSON M J , DEBITETTO A P . Draper unmanned vehicle systems[J]. Robotica: International journal of information, education and research in robotics and artificial intelligence, 2000, 18(3): 263-272.
[23] 梁建宏, 邹丹, 王松, 等. SPC-II机器鱼平台及其自主航行实验[J]. 北京航空航天大学学报, 2005(7): 709-713.
[24] LIANG J, WANG T, WEN L. Development of a two~ joint robotic fish for real -world exploration[J]. Journal of Field Robotics, 2011, 28(1): 70-79.
[25] 李家坤, 张开升, 赵波, 等. 仿生鲔科机器鱼多机体协同起动性能研究[J]. 机械设计与制造, 2022(9): 282-287.
[26] MARK S M R. GhostSwimmerTM AUV: applying biomimetics to underwater robotics for achievement of tactical relevance[J]. Marine Technology Society Journal, 2011, 45(4): 24-30.
[27] CAO Q Y, WANG R, ZHANG T D, et al. Hydrodynamic modeling and parameter identification of a bionic underwater vehicle: RobDact[J]. Cyborg and Bionic Systems, 2022, 1: 164-177.
[28] 孟健, 刘进长, 荣学文, 等. 四足机器人发展现状与展望[J]. 科技导报, 2015(33): 59-63.
[29] 黄亮. 面向舞台表演的海龟机器人及其多足稳定步态规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
[30] BAINES R, PATIBALLA S K, BOOTH J, et al. Multi-environment robotic transitions through adaptive morphogenesis[J]. Nature, 2022, 610(7931): 283-289.
[31] 遆肖聪. 仿生两栖机器人轨迹规划及控制[D]. 杭州: 浙江理工大学, 2022.
[32] KARAKASILIOTIS K, THANDIACKAL R, MELO K, et al. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.[J]. Journal of the Royal Society Interface, 2016, 13: 20151089.
[33] COHEN A, ZARROUK D. The amphistar high speed amphibious sprawl tuned robot: design and experiments[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020.
[34] 周耿. 水陆两栖蛙板机器人的设计、建模与控制[D]. 北京: 北京理工大学, 2016.
[35] WANG GANG, CHEN XI, YANG SHENGXI, et al. Subsea crab bounding gait of leg-paddle hybrid driven shoal crablike robot[J]. Mechatronics, 2017, 48: 1-11.
[36] HAN, B, LUO, X, WANG, X, et al. Mechanism design and gait experiment of an Amphibian robotic turtle [J]. Advanced. Robot, 2012, 25(16), 2083–2097.
[37] KATO NM. Swimming and walking of an amphibious robot with fin actuators[J]. Marine Technology Society Journal, 2011, 45(4): 181-197.
[38] KIM H J, JUN B H, LEE J. Multi-functional bio-inspired leg for underwater robots[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.
[39] GREINER H, SHECTMAN A, CHIKYUNG W, et al, Autonomous legged underwater vehicles for near land warfare[J]. Proceedings of Symposium on Autonomous Underwater Vehicle Technology, 1996: 41-48.
[40] SUI W, GUO S, ZHENG L, et al. Development of the insect-inspired biomimetic underwater microrobot for a father-son robot system[C]//2020 IEEE International Conference on Mechatronics and Automation (ICMA), 2020.
[41] PAN L.Analysis and simulation of modeling for transformable robot bio-inspired by mimetic octopus[C]//2022 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2022.
[42] 王光明. 仿鱼柔性长鳍波动推进理论与实验研究[D]. 长沙: 国防科学技术大学, 2009.
[43] EPSTEIN M, COLGATE J E, M. MACIVER A. Generating thrust with a biologically-inspired robotic ribbon fin[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006.
[44] BRESSERS S , CHUNG S , VILLANUEVA A, et al. JetSum: SMA actuator based undersea unmanned vehicle inspired by jellyfish bio-mechanics[C]// Proceedings of SPIE - The International Society for Optical Engineering United States: SPIE, 2010.
[45] SUN Y C , LEAKER B D , LEE J E , et al. Shape programming of polymeric based electrothermal actuator (ETA) via artificially induced stress relaxation[J]. Scientific Reports, 2019, 9(1): 13-17.
[46] LI, G, CHEN, X, ZHOU F. et al. Self-powered soft robot in the Mariana Trench. [J] Nature, 2021, 591, 66–71.
[47] WANG Z C, NIKOLAOS M. F, WEJ X. S. Logarithmic spiral-shaped robots for versatile grasping across scales[J]. Device, 2024, 100646.
[48] 张军豪, 陈英龙, 杨双喜, 等. 蛇形机器人: 仿生机理、结构驱动和建模控制[J]. 机械工程学报, 2022, 58(7): 75-92.
[49] CRESPIA, BADERTSCHERA, GUIGNARD A, et al. AmphiBot I: An amphibious snake-like robot[J]. Robotics and Autonomous Systems, 2005, 50(4): 163-175.
[50] CRESPI A, JSPEERT A, POLYTECHNIQUE F E. AmphiBot Ⅱ: An amphibious snake robot that crawls and swims using a central pattern generator[J]. Color Research & Application, 2006, 27(2): 130-135.
[51] BRESSERS S, CHUNG S H, VILLANUEVA A, et al. JetSum: SMA actuator based undersea unmanned vehicle inspired by Jellyfish bio-mechanics[J]. Proceedings of the SPIE the International Society for Optical Engineering, 2010: 76440.
[52] 张溶天. 基于液压软体驱动器的仿生水母机器人研究[D]. 长春: 吉林大学, 2023.
[53] MARUT, KENNETH, et al. A jellyfish-inspired jet propulsion robot actuated by an iris mechanism[J]. Smart Materials & Structures, 2013, 22(22): 094021.
[54] VILLANUEVA, A. A. , et al. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro)[J]. Bioinspiration & Biomimetics, 2013, 46(8): 1-18.
[55] ROBERTSON M , EFREMOV F , PAIK J . RoboScallop: a bivalve inspired swimming robot[J]. IEEE Robotics & Automation Letters, 2019: 1-2.
[56] 殷敬伟, 刘强, 陈阳, 等. 基于海豚whistle信号的仿生主动声呐隐蔽探测技术研究[J]. 兵工学报, 2016, 37(5): 769-777.
[57] LI J, HAN G, CHANG S, et al. A semantic segmentation-based underwater acoustic image transmission framework for cooperative SLAM[J]. Defence Technology, 2024, 33(3): 339-351.
[58] KOTTAPALLI P G A, BORA M, KANHERE E, et al. Cupula-inspired hyaluronic acid-based hydrogel encapsulation to form biomimetic mems flow sensors[J]. Sensors, 2017, 17(8): 1728.
[59] 邓小青. 太阳能自主水下航行器[J]. 水雷战与舰船防护, 2012, 20(1): 93-98.
[60] 赵爱博, 李子豪, 王紫玄, 等. 直驱式波浪能发电在海洋监测设备中的应用研究[J/OL]. 电气传动, 2022, 1-8.
[61] 丰利军, 朱春波, 张剑韬, 等. 水下无人航行器水下无线充电关键技术研究[J]. 舰船科学技术, 2020, 42(23): 159-162.
FENG L J, ZHU C B, ZHANG J T, et al. Research on key technologies of underwater wireless charging for unmanned aerial vehicles[J]. Ship Science and Technology, 2020, 42(23): 159-162.
[62] 谭进波, 王扬威, 顾宝彤, 等. 胸鳍波动推进仿生机器鱼研究进展与分析[J]. 微特电机, 2014, 42(10): 78-82+88.
[63] 傅珂杰, 曹许诺, 张桢, 等. 水下软体机器人柔性驱动方式及其仿生运动机理研究进展[J]. 科技导报, 2017, 35(18): 44-51.
[64] 王延杰, 郝牧宇, 张霖, 等. 基于智能驱动材料的水下仿生机器人发展综述[J]. 水下无人系统学报, 2019, 27(2): 123-133.
[65] 杨姝慧, 郝子鑫, 李彬. 机器人路径规划算法研究分析与综述[J]. 齐鲁工业大学学报, 2024, 38(5): 37-46.