舰船设备振动噪声控制技术对提高舰船隐身性能和改善船员工作环境具有重要意义。针对当下浮筏隔振研究趋向于多样化,为充分发挥声子晶体优异的阻尼特性,突破复合材料-钢材混合结构设计的困难,提出一种针对船用风机的集浮筏材料-结构-减振性能一体化的小型浮筏隔振系统。基于频响函数子结构综合法和有限元分析法,分析不同结构形式筏架的隔振性能,分析结果表明声子晶体夹芯层厚度为100 mm的框架式筏架隔振性能最优。再对其进行开孔优化设计,研究开孔半径和孔隙率等因素的影响,优化设计后声子晶体筏架自身隔振性能有所提升,且质量降低12.75%。研究结果可为复合材料浮筏结构设计和优化提供了参考。
The vibration and noise control technology of ship equipment is of great significance to improve the stealth performance of ships and improve the working environment of crews. In view of the diversification of the current research on floating raft vibration isolation, in order to give full play to the excellent damping characteristics of phononic crystals and break through the difficulties in the design of composite material-steel hybrid structure, a small floating raft vibration isolation system integrating material-structure-vibration damping performance of floating raft for marine wind turbines was proposed. Based on the frequency response function substructure synthesis method and finite element analysis method, the vibration isolation performance of rafts with different structural forms is analyzed, and the analysis results show that the frame raft with a thickness of 100 mm of phononic crystal core layer has the best vibration isolation performance. Then, the influence of pore radius and porosity was studied, and the vibration isolation performance of the phononic crystal raft was improved and the mass was reduced by 12.75%. The research results can provide a reference for the design and optimization of composite floating raft structures.
2025,47(20): 44-50 收稿日期:2025-1-21
DOI:10.3404/j.issn.1672-7649.2025.20.007
分类号:U663.3
基金项目:国家自然科学基金项目(12372358)
作者简介:李凯(1999-),男,硕士研究生,研究方向为振动与噪声控制
参考文献:
[1] FERREIRA J V, EWINS D J. Nonlinear receptance coupling approach based on describing functions[J]. Proceedings-SPIE the international society for optical engineering, 1996, 1034-1040.
[2] LIU W, EWINS D J. Substructure synthesis via elastic media[J]. Journal of Sound and Vibration, 2002, 257(2): 361-379.
[3] 吴震东, 华宏星. 基于频响函数合成的浮筏隔振系统的响应研究[J]. 噪声与振动控制, 2007(5): 24-27.
WU Z D, HUA H X. Research of the raft system based on frequency response function coupled method[J]. Noise and Vibration Control, 2007(5): 24-27.
[4] 况成玉, 张志谊, 华宏星. 周期桁架浮筏系统的隔振特性研究[J]. 振动与冲击, 2012, 31(2): 115-118+135.
KUANG C Y, ZHANG Z Y, HUA H X. Study on vibration isolation characteristics of periodic truss floating raft system[J]. Journal of Vibration and Shock, 2012, 31(2): 115-118+135.
[5] REN L L, LI Y, HUANG X C, et al. Dynamic modeling and characteristic analysis of floating raft system with attached pipes[J]. Shock and Vibration, 2017, 2017(1): 9135715.
[6] 司贵海, 高芳清, 陈彦北, 等. 一种间断肋式筏架的动力特性及隔振性能分析[J]. 噪声与振动控制, 2017, 37(5): 46-49.
SI G H, GAO F Q, CHEN Y B, et al. Dynamic characteristics and vibration isolation performance of discontinuous ribbed raft frames[J]. Noise and Vibration Control, 2017, 37(5): 46-49.
[7] SONG Y B, WEN J H, YU D L, et al. Suppression of vibration and noise radiation in a flexible floating raft system using periodic structures[J]. Journal of Vibration and Control, 2015, 21(2): 217-288.
[8] ZHANG J G, YANG H R, CHEN G Z, et al. Structure and modal analysis of carbon fiber reinforced polymer raft frame[J]. Journal of Low Frequency Noise Vibration and Active Control, 2018, 37(3): 577-589.
[9] 任龙龙. 非线性隔振系统研究与应用[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[10] 郭启兴. 舰船平置板架式浮筏结构型式的设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[11] 邹涛. 浮筏隔振系统优化设计与隔振特性研究[D]. 大连: 大连理工大学, 2019.
[12] 康逢辉, 吴医博, 杨瑞瑞, 等. 阻尼复合材料在舰船筏架中的应用研究[J]. 舰船科学技术, 2018, 40(7): 58-62.
KANG F H, WU Y B, YANG R R, et al. Application of damping composites in ship rafts[J]. Ship Science and Technology, 2018, 40(7): 58-62.
[13] ZHANG H Q, XIAO W Q, ZHANG F. Dynamic analysis and experimental investigation of particle damping for the vibration reduction and isolation of floating raft using the two-phase flow theory of gas-particle[J]. Ships and Offshore Structures, 2024.
[14] 李永胜, 王纬波, 张彤彤, 等. 复合结构浮筏设计及隔振性能研究[C]//第十八届船舶水下噪声学术讨论会, 2021.
[15] HUANG X C, ZHANG Z Y, ZHANG Z H, et al. Vibro-acoustic optimization of an immersed cylindrical structure with a floating-raft system inside by using frequency-response-function-based substructuring sensitivity analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2011, 225(2): 111-132.