潜器的螺旋运动是一种重要的机动方式,对水下拖曳系统的机动性能和稳定性具有关键的指示意义,通过引入无量纲参数,量化影响系统动态响应的关键因素。研究中构建了基于集中质量法的动力学模型,将潜器六自由度操纵运动与拖曳缆动力学行为相结合,开展系统的数值仿真与分析,考虑潜器回转半径与拖曳缆总长度之比、拖曳缆总质量与拖曳体质量之比、拖曳缆单位长度质量与单位长度阻力之比、潜器水平回转速度与垂向潜浮速度之比以及拖曳缆浮力与重力之比,对潜器在螺旋上浮运动中水下拖曳系统运动响应的影响。研究发现,不同无量纲参数显著影响系统的张力和拖曳体升沉变化特性,能够有效揭示潜器拖曳系统在复杂运动模式下的普遍规律。
The spiral motion of the submersible is an important mode of maneuvering, which is of key indicative significance for the maneuvering performance and stability of the underwater towed system, and the key factors affecting the dynamic response of the system are quantified through the introduction of dimensionless parameters. In the study, a dynamic model based on the concentrated mass method is constructed to combine the six-degree-of-freedom maneuvering motion of the submersible with the dynamic behavior of the towing cable to carry out numerical simulation and analysis of the system. The implications of the ratio of the rotational radius of the submersible to the total length of the towed cable, the ratio of the total mass of the towed cable to the mass of the towed body, the ratio of the mass per unit length of the towed cable to the drag per unit length, the ratio of the horizontal rotational velocity of the submersible to the vertical submerged velocity, and the buoyancy-to-gravity ratio of the towed cable, are considered with respect to the kinematic response of the submersible's underwater towed system in spiral upward motion. It is found that different dimensionless parameters significantly affect the tension of the system and the variation characteristics of the towed body lift and sink, which can effectively reveal the universal laws of the submarine towed system in complex motion patterns.
2025,47(20): 70-77 收稿日期:2025-1-10
DOI:10.3404/j.issn.1672-7649.2025.20.011
分类号:U666
基金项目:国家自然科学基金资助项目(51709133)
作者简介:王志博(1983-),男,博士,副研究员/高级工程师,研究方向为水下拖曳系统
参考文献:
[1] 龚昊. 立扁体AUV的操纵性与运动控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[2] KENNEDY R M , STRAHAN E S. A linear theory of transverse cable dynamics at low frequencies[J]. A Linear Theory of Transverse Cable Dynamics at Low Frequencies, 1981, 6463: 1-49.
[3] ABLOW C M, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean engineering, 1983, 10(6): 443-457.
[4] WALTON T S, POLACHEK H. Calculation of transient motion of submerged cables[J]. Mathematics of computation, 1960, 14(69): 27-46.
[5] HUANG S. Dynamic analysis of three-dimensional marine cables[J]. Ocean Engineering, 1994, 21(6): 587-605.
[6] CHAI Y T, VARYANI K S, BARLTROP N D P. Three-dimensional lump-mass formulation of a catenary riser with bending, torsion and irregular seabed interaction effect[J]. Ocean Engineering, 2002, 29(12): 1503-1525.
[7] 罗薇, 张攀. 水下拖曳系统运动预报[J]. 武汉理工大学学报, 2007, 29(6): 139-142.
LUO W, ZHANG P. The motion prediction of motion of towed system[J]. Journal of Wuhan University of Technology, 2007, 29(6): 139-142.
[8] KISHORE S S, GANAPATHY C. Analytical investigations on loop-manoeuvre of underwater towed cable-array system[J]. Applied ocean research, 1996, 18(6): 353-360.
[9] GROSENBAUGH M A. Transient behavior of towed cable systems during ship turning maneuvers[J]. Ocean Engineering, 2007, 34(11-12): 1532-1542.
[10] WANG Z B, SUN G. Parameters influence on maneuvered towed cable system dynamics[J]. Applied Ocean Research, 2015, 49: 27-41.
[11] 王浩天, 吴家鸣, 许顺源. 潜艇高速空间旋回运动分离舵横倾控制的数值研究[J]. 中国造船, 2022, 63(1): 126-139.
WANG H T, WU J M, XU S Y. Numerical research on roll control of submarine with detached rudder in high-speed space turning motion[J]. Shipbuilding of China, 2022, 63(1): 126-139.
[12] 周广礼, 杜度, 高霄鹏, 等. 潜艇六自由度空间操纵运动直接数值预报[J]. 船舶力学, 2021, 25(12): 1635-1647.
ZHOU G L, DU D, GAO X P, et al. Free-running maneuvering simulations for a submarine using direct CFD approach[J]. Journal of Ship Mechanics, 2021, 25(12): 1635-1647.
[13] WANG F, TU W M, DENG D H, et al. Dynamic effect research of cable-lead-in rod on towed system[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24: 745-753.
[14] GUO L, YUAN Y C, TANG W Y, et al. A numerical investigation on quasi-static configuration and nonlinear dynamic response characteristics of marine towing cable[J]. Ocean Engineering, 2021, 240: 110-138.
[15] 王飞, 涂卫民, 邓德衡, 等. 水下双阵列拖曳系统缆破断情况下的运动响应[J]. 上海交通大学学报, 2020, 54(2): 211-220.
WANG F, TU W M, DENG D H, et al. Dynamic research on dual array towed system for breaking situations[J]. Journal of Shanghai Jiaotong University, 2020, 54(2): 211-220.
[16] 王飞, 丁伟, 邓德衡, 等. 水下多缆多体拖曳系统运动建模与模拟计算[J]. 上海交通大学学报, 2020, 54(5): 441-450.
WANG F, TU W M, DENG D H, et al. Motion modeling and numerical simulation study of underwater multi-cable multi-body towed system[J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 441-450.
[17] 徐亦凡. 潜艇操纵原理与方法[M]. 北京: 兵器工业出版社, 2002.