在海上航行中,船舶由于受到风、浪、流等环境载荷的影响,船体会产生横摇、纵摇等运动,这些运动不仅影响船舶的稳定性,还会对雷达、通信设备的正常运行造成干扰。船载稳定平台通过姿态调整,可以补偿船体运动,从而保持稳定的操作环境。然而,传统控制策略在补偿精度和抗干扰能力方面存在局限性,限制了稳定平台在复杂海况下的应用。为此,本文提出了一种结合改进滑模控制与增益组合控制的复合控制方法,旨在提高船载稳定平台的补偿精度和抗干扰能力。改进滑模控制能够增强系统的抗干扰能力和跟踪性能,使其能够更好地适应复杂环境;增益组合控制通过优化控制参数,可以提高补偿精度。实验结果表明,与传统反馈控制相比,复合控制方法的平均补偿精度提高了23%。实船测试进一步验证了在船舶靠港时,补偿精度可稳定控制在0.15°以内。本研究成果为船载稳定平台的补偿控制系统提供了理论依据和工程参考,可进一步推广应用于其他船载稳定平台,助力提升海上作业的安全性与工作效率。
During maritime navigation, ships are subjected to environmental loads such as wind, waves, and currents, causing roll and pitch motions. These movements not only affect the stability of the ship, but interfere with the normal operation of radar and communication equipment. Shipborne stabilized platform utilizes attitude adjustments to compensate for the ship′s motion, thereby maintaining a stable operational environment. However, in compensation accuracy and anti-disturbance capability, traditional control strategies have limitations,restricting the application of stabilized platforms in complex sea conditions. To address these challenges, this study proposes a composite control method that combines improved sliding mode control with gain combination control, aiming to enhance the compensation accuracy and anti-disturbance capability of shipborne stabilized platform. The improved sliding mode control can enhance the system′s anti-disturbance capability and tracking performance, making it more adaptable to complex environments; gain combination control optimizes control parameters to improve compensation accuracy. Experimental results show that the proposed composite control method can improve the average compensation accuracy by 22% compared to feedback control. Real-ship tests further validate that during docking, the compensation accuracy can be stably maintained within 0.15°. This study provides a theoretical basis and engineering reference for the compensation control system of the shipborne stabilized platforms. It can be further extended to other shipborne stabilized platforms, contributing to enhanced safety and operational efficiency in maritime operation.
2025,47(20): 78-84 收稿日期:2025-1-15
DOI:10.3404/j.issn.1672-7649.2025.20.012
分类号:U665.1
基金项目:山东省自然科学基金资助项目(ZR2023QE161);西海岸校长基金资助项目(XZJJ-2024207)
作者简介:曾成宇(2001-),男,硕士研究生,研究方向为运动补偿
参考文献:
[1] J M HILKERT. Inertially stabilized platform technology Concepts and principles[J]. IEEE Control Systems Magazine, 2008, 28(1): 26-46.
[2] HAO L J, SUN H W, LUO R, et al. Research progress in firepower compatibility technology[J]. Annals of Operations Research, 2021, 326(21): 1-40.
[3] 薛海波, 王鑫, 崔亚昆, 等. 海上风机平台登靠舷梯的关键技术分析[J]. 技术与市场, 2019, 26(11): 5-8.
[4] 杨光海, 王宏宇, 周通, 等. 高精度光电伺服稳定平台控制技术[J]. 兵工自动化, 2021, 40(8): 9-11+29.
[5] 图雅, 杜佳璐, 刘文吉. 船载三自由度并联稳定平台的设计及运动学分析[J]. 舰船科学技术, 2022, 44(5): 154-157.
TU Y, DU J L, LIU W J. Design and kinematics analysis of 3-DOF ship-borne parallel stabilization platform[J]. Ship Science and Technology, 2022, 44(5): 154-157.
[6] H. KHODADADI, M. R. J. MOTLAGH, M. Gorji. Robust control and modeling a 2-DOF inertial stabilized platform[C]//International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), Kuantan, Malaysia, 2011.
[7] ZHOU X Y, WANG W Q, SHI Y J, et al. Neural network/PID adaptive compound control based on rbfnn identification modeling for an aerial inertially stabilized platform[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 16514-16522.
[8] SAUGATO DEY, THAZHE KUNNATH SUNIL KUMAR, SANKAR ASHOK, et al. Design of adaptive fuzzy PID control framework for 3-Axis platform stabilization[C]//2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 2023.
[9] JIE Zhang, ZHAOPENG Jin, YANZHI Zhao, et al. Design and implementation of novel fractional-order controllers for stabilized platforms[J]. IEEE Access, 2020, 8: 93133-93144.
[10] RENCHENG JIN, JUNWEI WANG, YANGYI OU, et al. Composite ADRC speed control method based on LTDRO feedforward compensation[J]. Sensors, 2024, 24(8): 2605.
[11] LEILEI CUI, SHUAI WANG, ZHENGYOU ZHANG, et al. Asymptotic trajectory tracking of autonomous bicycles via backstepping and optimal control[J]. IEEE Control Systems Letters, 2022, 6: 1292-1297.
[12] EMMANUEL MOULAY, VINCENT LÉCHAPPÉ, EMMANUEL BERNUAU, et al. Fixed-time sliding mode control with mismatched disturbances[J]. Automatica, 2022, 136: 0005-1098.
[13] LIDONG GUO, ZHENFAN TAN. Application of a sliding mode variable structure controller for stabilized platform of shipborne weapons [C]//2010 2nd IEEE International Conference on Information Management and Engineering. Chengdu, China, 2010.
[14] ZUNFENG DU, XIANGYU CHEN, QINGWEI ZHANG, et al. An extended state observer-based sliding mode control method for hydraulic servo system of marine stabilized platforms[J]. Ocean Engineering, 2023, 297: 114386.
[15] FARDILA MOHD ZAIHIDEE, SAAD MEKHILEF, MARIZAN MUBIN. Robust speed control of pmsm using sliding mode control (SMC)–a review[J]. Energies, 2019, 12(9): 1669.
[16] ZHANG, HONGBO, ZHOU HONGBO, LU, et al. Design of a disturbance feedforward based grey predictive controller for stabilized platform system[J]. Engineering, 2016, 28(2): 64.
[17] ALIREZA SAFA, REZA YAZDANPANAH ABDOLMALAKI. Robust output feedback tracking control for inertially stabilized platforms with matched and unmatched uncertainties[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 118-131.
[18] BERTIL ESKSTRAND, SWEDEN. Equations of motion for a Two-axes gimbal system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 1083-1091.
[19] A. R. GHAFARI-KASHANI, J. FAIZ, M. YAZDANPANAH. Integration of non-linear and sliding mode control techniques for motion control of a permanent magnet synchronous motor[J]. IET Electric Power Application, 2010, (4) : 267-280.
[20] SHUANGHE YU, XINGHUO YU. Robust global fast terminal sliding mode controller for rigid robotic manipulators[C]//2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering. TENCOM '02. Proceedings. Beijing, China, 2002.
[21] YANJUN SHEN, YUEHUA HUANG. Uniformly observable and globally lipschitzian nonlinear systems admit global finite-time observers[J]. IEEE Transactions on Automatic Control, 2009, 54(11): 2621-2625.
[22] TU YA, JIALU DU, JIAN LI. PTESO based robust stabilization control and its application to 3-DOF ship-borne parallel platform[J]. Ocean Engineering, 2023, 284: 115202.