为分析螺旋桨非定常负载作用下螺旋桨转速以及轴承刚度对桨-轴-艇耦合系统声振特性的影响,本文基于雷诺平均(RANS)方法,结合剪切应力输运(SST)k-ω湍流模型,利用UDF编译非均匀来流下流场的速度入口边界条件计算不同转速下螺旋桨非定常负载。在此基础上,建立推进系统弹性支撑下桨-轴-艇耦合系统有限元模型,计算不同转速激励下的桨-轴-艇耦合系统声振响应。此外,改变轴承刚度,进行耦合系统不同轴承刚度下的力传递率分析。研究结果表明,螺旋桨激励频率集中于轴频和叶频,激励强度随转速增加显著增强,且主激励频率与系统固有频率耦合可能引发共振。而轴承刚度调节可显著影响系统振动传递特性,在0.5~1.5倍原刚度范围内降低刚度可减少力传递率,并通过调整刚度,可以使耦合系统固有频率远离螺旋桨主激励频率,从而避免共振。
This study establishes a finite element model based on the The propeller excitation force under non-uniform incoming flow has been less considered when analyzing the acoustic vibration characteristics of propeller-shaft-boat in the past. Therefore, in order to analyze the influence of propeller speed and bearing stiffness on the acoustic vibration characteristics of the coupled propeller-shaft-boat system under non-constant propeller loading, this paper is based on the Reynolds averaging (RANS) method, combined with the shear stress transport (SST) k-ω turbulence model, and compiles the velocity inlet boundary conditions of the flow field in non-uniform oncoming flow by using the UDF to compute the acoustic vibration characteristics of propellers with different speeds under non-constant loads. non-constant load. On this basis, a finite element model of the propeller-shaft-boat coupling system is established to calculate the acoustic vibration response of the propeller-shaft-boat coupling system under different rotational speed excitations. In addition, the bearing stiffness is changed to analyze the force transmission rate of the coupled system under different bearing stiffnesses. The research results indicate that the propeller excitation frequencies are primarily concentrated at the shaft frequency and blade frequency, with the excitation intensity significantly increasing with rotational speed. Furthermore, the dominant excitation frequencies may couple with the system’s natural frequencies, potentially inducing resonance. Adjustments in bearing stiffness can markedly influence the system’s vibration transmission characteristics. Reducing the stiffness within the range of 0.5 to 1.5 times the original stiffness (K) decreases the force transmission rate. Additionally, by adjusting the stiffness, the natural frequency of the coupled system can be shifted away from the propeller’s dominant excitation frequencies, thereby avoiding resonance and mitigating vibration amplification.
2025,47(20): 85-93 收稿日期:2024-12-12
DOI:10.3404/j.issn.1672-7649.2025.20.013
分类号:U664.2
基金项目:国家自然科学基金资助项目(52241102)
作者简介:刘可欣(2000-),女,硕士研究生,研究方向为振动与噪声控制
参考文献:
[1] 徐野, 熊鹰, 黄政. 船舶桨轴舵及船体艉部耦合振动噪声数值研究[J]. 推进技术, 2020, 41(4): 942-950.
[2] 楼京俊, 张阳阳, 俞翔. 桨-轴-艇纵向耦合振动机理研究[J]. 应用力学学报, 2018, 35(1): 54-59.
[3] 张阳阳, 楼京俊. 螺旋桨非定常激励力传递特性研究[J]. 噪声与振动控制, 2018, 38(2): 102-107.
[4] 秦广菲, 姚慧岚, 张怀新. 螺旋桨脉动压力作用下自航船舶艉部振动数值研究[J]. 上海交通大学学报, 2022, 56(9): 1148-1158.
[5] 舒敏骅. 非均匀来流下桨轴耦合特性研究[D]. 上海: 上海交通大学, 2017.
[6] 曹贻鹏. 推进轴系引起的艇体结构振动与辐射噪声控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[7] 崔杰, 高聪, 魏强, 等. 轴承力作用下船舶尾部声振特性研究[J]. 华中科技大学学报: 自然科学版, 2020, 48(2): 126-132.
[8] 胡志祥, 任伟新. 基于递归希尔伯特变换的振动信号解调和瞬时频率计算方法[J]. 振动与冲击, 2016, 35(7): 126-132.
[9] JESSUP S D. Measurement of multiple blade rate unsteady propeller forces[J]. Mechanical Loads, 1990.
[10] 徐野, 熊鹰, 黄政. 螺旋桨激励水下壳体振动噪声数值研究[J]. 振动与冲击, 2020, 39(2): 86-91+122
[11] HAN X, LIN W, WANG D, et al. Numerical simulation of super upper branch of a cylindrical structure with a low mass ratio[J]. Ocean Engineering, 2018, 168(11): 108-120.
[12] SU G, SHEN H, LI N, et al. Numerical investigation of the hydrodynamics of stingray swimming under self-propulsion[J]. Journal of Fluids and Structures, 2021, 106: 103383.
[13] 陈志坚. 舰艇振动学[M]. 北京: 国防工业出版社, 2010.
[14] 李燎原. 螺旋桨激振力引起的船体结构振动及水下辐射噪声特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.