针对风载荷-吊装安全风险关系问题,应用三维建模软件建立了复杂的50000 DWT低碳环保型MR油轮上建分段几何模型,由于在上建起吊阶段,受风载荷作用的影响,其动态响应表现出不规则性,同时该阶段伴随持续的时间变化过程,所以运用计算流体力学、结构力学、流固耦合、有限元等基础理论与方法对上建分段起吊-悬空过程进行了非线性瞬态仿真;根据风力等级不同,进行了无风、1级风、2级风等8个工况的数值计算及分析。结果表明,在上建起吊-悬空过程中,吊排的变形与应力变化较为显著,随着风速的增加,变形和应力均显著增大,尤其在7级风速下,以变化最大的某处吊排为例,变形量与应力值较1~6级风速有显著提升,较6级风分别增加了约27.7%和30%,即大约10 mm和60 MPa。
To address the wind load-lifting safety risk relationship, a complex 50000 DWT low-carbon environmentally friendly MR tanker upper deck modeling geometric model was constructed using 3D modeling software, Since the dynamic response of the superstructure in the lifting stage, affected by the wind load, shows irregularity, and at the same time, this stage is accompanied by a continuous time-varying process, the nonlinear transient simulation of the superstructure segmental lifting-suspension process is carried out by using the basic theories and methods of computational fluid dynamics, structural dynamics, fluid-structure coupling, and finite elements; eight working conditions, such as no wind, class 1 wind, etc., according to the different wind levels, were taken into consideration and simulated and analyzed. Simulation and analysis were carried out. The results show that: During the superstructure lifting-suspension process, the deformation and stress of the hanging rows changed more significantly, and with the increase of wind speed, the deformation and stress increased significantly, especially at wind speed of class 7, the deformation and stress values were significantly increased compared with those of wind speeds of classes 1 to 6, and the values were increased by about 27.7% and 30% compared with those of class 6, i.e., about 10 mm and 60 MPa, respectively.
2025,47(20): 100-106 收稿日期:2024-11-11
DOI:10.3404/j.issn.1672-7649.2025.20.015
分类号:U661
基金项目:企业委托(21188007924)
作者简介:温小飞(1977-),男,副教授,研究方向为船舶建造技术
参考文献:
[1] 张帅, 罗广恩, 郑新招, 等. 含起重设备的船舶上层建筑吊装强度有限元分析[J]. 造船技术, 2024(1): 8-13.
ZHANG S, LUO G E, ZHENG X Z, et al. Finite element analysis on lifting strength of ship superstructure with hoisting equipment[J]. Shipbuilding Technology, 2024(1): 8-13.
[2] 周卫鹏, 苏放, 汪佳伦, 等. 动态风载荷作用下大型集装箱船桥翼结构响应分析[J]. 中国舰船研究, 2024, 19(6): 268-274
ZHOU W P, SU F, WANG J L, et al. Response analysis of large container ship bridge wing structures under dynamic wind loads[J]. Chinese Journal of Ship Research, 2024, 19(6): 268-274
[3] 李鹏, 朱洪泽, 骆光杰, 等. 基于ARMA模型的海上风机随机风场模拟[J]. 武汉大学学报(工学版), 2024, 57(1): 112-120.
LI P, ZHU H Z, LUO G J, et al. Simulation of random wind field for offshore wind turbines based on ARMA model[J]. Journal of Wuhan University (Engineering Edition), 2024, 57(1): 112-120.
[4] 蒋永旭, 付翯翯, 俞剑. 基于CFD的客滚船上层建筑风阻计算及优化设计[J]. 船海工程, 2023, 52(4): 120-123.
JIANG Y X, FU H H, YU J. Calculation and optimization design of wind resistance of passenger-roro ship superstructures based on CFD[J]. Ship & Ocean Engineering, 2023, 52(4): 120-123.
[5] 苗洋, 封少雄, 叶代扬, 等. 基于CFD的FPSO风载荷规范计算适用性研究[J]. 中国舰船研究, 2024, 19(2): 37-44.
MIAO Y, FENG S X, YE D Y, et al. Study on applicability of FPSO wind load calculation based on CFD in specifications[J]. Chinese Journal of Ship Research, 2024, 19(2): 37-44.
[6] 翟露阳,韩佳颖. 散货船风载荷计算方法分析及对比研究[J]. 天津理工大学学报, 2024, 40(4): 114-118.
ZHAI L Y, HAN J Y. Analysis and comparative study on calculation methods of wind load of bulk carrier[J]. Journal of Tianjin University of Technology, 2024, 40(4): 114-118.
[7] 孙华伟, 常文田, 李宏伟, 等. 集装箱船上层建筑气动干扰特性与风阻优化[J]. 哈尔滨工程大学学报, 2024, 45(4): 651-658.
SUN H W, CHANG W T, LI H W, et al. Aerodynamic interference characteristics and wind resistance optimization of container ship superstructures[J]. Journal of Harbin Engineering University, 2024, 45(4): 651-658.
[8] 张大朋, 严谨, 赵博文, 等. 基于大涡模拟的大型水面舰船复杂风场数值模拟[J]. 船舶工程, 2023, 45(6): 52-60+67.
ZHANG D P, YAN J, ZHAO B W, et al. Numerical simulation of complex wind field for large surface ships based on large eddy simulation[J]. Ship Engineering, 2023, 45(6): 52-60+67.
[9] LEE S, LEE S, KWON S D. Effects of topside structures and wind profile on wind tunnel testing of FPSO vessel models[J]. Journal of Marine Science and Engineering, 2020, 8(6): 422.
[10] HAI N D, DAM N N, GIANG N V. Predicting the effects of the wind load direction to naval vessels resistance[J]. International Journal of Transportation Engineering and Technology, 2019, 8(2): 18-24.
[11] PRPIĆ-ORŠIĆ J, VALČIĆ M, ČARIJA Z. A hybrid wind load estimation method for container ship based on computational fluid dynamics and neural networks[J]. Journal of marine science and engineering, 2020, 8(7): 539.
[12] 程玉芹, 罗广恩. 上层建筑在起吊冲击载荷作用下结构强度分析[J]. 江苏船舶, 2014, 31(6): 10-13.
CHENG Y Q, LUO G E. Structural strength analysis of superstructure under hoisting impact load[J]. Jiangsu Ship, 2014, 31(6): 10-13.
[13] LI H, RONG L, ZHANG G. CFD prediction of convective heat transfer and pressure drop of pigs in group using virtual wind tunnels: Influence of grid resolution and turbulence modelling[J]. Biosystems engineering, 2019, 184: 69-80.
[14] 赵资恒, 谭雁清, 马廉洁, 等. 考虑流固耦合作用的超高速液体动静压轴承油膜特性研究[J]. 润滑与密封, 2024, 49(7): 50-57.
ZHAO Z H, TAN Y Q, MA L J, et al. Study on oil film characteristics of ultra-high speed hydrostatic and hydrodynamic bearings considering fluid-structure interaction[J]. Lubrication Engineering, 2024, 49(7): 50-57.
[15] 董超逸, 曹岩, 邹易, 等. 基于仿生理论的船舶双尾鳍设计优化[J]. 舰船科学技术, 2023, 45(21): 50-53.
DONG C Y, CAO Y, ZOU Y, et al. Design optimization of ship twin skegs based on bionic theory[J]. Ship Science and Technology, 2023, 45(21): 50-53.
[16] 董明晓, 杜鑫宇, 刘忠旭, 等. 风载荷对工作状态下门式起重机货物摆动影响的动力学分析[J]. 中国工程机械学报, 2023, 21(2): 102-105.
DONG M X, DU X Y, LIU Z X, et al. Dynamic analysis of the influence of wind load on cargo swing of gantry crane in working condition[J]. Chinese Journal of Construction Machinery, 2023, 21(2): 102-105.