针对船舶通海管路系统,对低航速下管路的流场与噪声情况进行研究。通过引入体积力技术,模拟在低航速时由于水下航行体冷却系统的作用,冷却水流需要不断与外界交换的情况下,对管路排水引起的噪声情况进行分析,通过仿真计算得到低航速管路系统的流场情况与声压频谱情况,可知,体积力的作用可很好地推动水流流入管道,为低航速下管路系统的噪声计算提供参考。
A study was conducted on the flow field and noise situation of the ship’s sea pipeline system at low speeds. By introducing volumetric force technology, the noise caused by pipeline drainage was analyzed under the continuous exchange of cooling water flow with the outside world due to the cooling system of underwater vehicles at low speeds. The flow field and sound pressure spectrum of the low-speed pipeline system were obtained through simulation calculations. It can be concluded that the effect of volumetric force can effectively promote water flow into the pipeline, providing a reference for noise calculation of pipeline systems at low speeds.
2025,47(20): 107-112 收稿日期:2025-1-9
DOI:10.3404/j.issn.1672-7649.2025.20.016
分类号:U664.84
基金项目:国家自然科学基金资助项目(52241102)
作者简介:宋江渝(2000-),男,硕士研究生,研究方向为CFD、振动与噪声控制
参考文献:
[1] LI Q, SONG J, SHANG D. Experimental investigation of acoustic propagation characteristics in a fluid-filled polyethylene pipeline[J]. Applied Sciences, 2019, 9(2): 1-23
[2] 楼红伟, 胡光锐, 何元安. 出海管路系统的噪声振动及声辐射[J]. 上海交通大学学报, 2002(5): 726-729.
[3] 王翊. 蒸汽管路阀门流动与噪声源特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
[4] 刘小侠. 船舶海水管路系统噪声特性研究[D]. 武汉: 华中科技大学, 2022.
[5] 宋佳朋. 管路声传播特性及通海管路噪声源评价研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[6] LI Q, SONG J P, SHANG D J, et al, Sound radiation at the nozzle of a pipeline system and noise reduction based on a non-anechoic pool[J]. Applied Acoustics, 2021, 182: 108227.
[7] 潘国雄, 贾晓丹, 张生乐, 等. 通海管路出水管末端管径对水动力噪声的影响研究[J]. 舰船科学技术, 2019, 41(13): 67-70.
[8] 孙启, 徐国栋, 郑荣. 基于FEM+AML方法的船舶海底门水下辐射噪声预报分析[J]. 舰船科学技术, 2021, 43(23): 117-121.
[9] GUANG F C, WEN P Z, GUO W W. Radiation characteristics of noise from inlet and outlet of seawater piping system[J]. Ship Engineering, 2005, 1: 55-58.
[10] WU J J, LI T Q, CHEN M S. On the study of a body force model for a jetting type breakwater[J]. Ocean Engineering, 2024, 310: 118695.
[11] ARASH E, MARKO V. A body-force model for waterjet pump simulation[J]. Applied Ocean Research, 2019, 90: 0141-1187.
[12] YANG Q, WANG Y, ZHANG Z. Numerical prediction of the fluctuating noise source of waterjet in full scale[J]. Journal of Marine Science and Technology, 2014, 19(4): 510-527.
[13] TOMOHIRO, TAKAI, MANIVANNAN, et al. Verification and validation study of URANS simulations for an axial waterjet propelled large high-speed ship[J]. Journal of Marine Science & Technology, 2011, 16: 437-447.
[14] DELANEY K, DONNELLY M, EBERT M, et al. Use of RANS for waterjet analysis of a high-speed sealift concept vessel[J]//HR Technical Report, 2009, 465: 6.
[15] Eslamdoost A, Larsson L, Bensow R Analysis of the thrust deduction in waterjet propulsion - The Froude number dependence[J]. Ocean Engineering -Oxford-, 2018, 152: 100-112.
[16] 盛胜我. 有限元法在声学中的应用[J]. 声学技术, 1988(1): 34-38.
[17] BÉRIOT H, TOURN OUR M. A review of stabilized FEM for Helmholtz equation[C]// Noise and Vibration: Emerging Methods, 2009.
[18] DE LANGHE, KOEN, et al. Advanced simulation techniques for vehicle acoustic panel loading predictions, including FEM AML and Fast Multipole BEM (FMBEM).[C]//Inter Noise, 2011.
[19] 裴金亮. 潜艇自流冷却系统流动特性计算研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.