为探究复合材料无人艇的抗爆性能,针对水下爆炸冲击载荷作用下玻璃纤维泡沫夹芯艇体结构的动态响应特征展开研究,本文采用声固耦合方法建立水下爆炸冲击载荷作用下泡沫夹芯艇体结构整艇数值仿真模型,并与实艇试验结果进行对比,验证了其可靠性;基于泡沫夹芯艇体结构质量不变原则,通过控制单一变量分析玻璃纤维面板厚度,面板铺层角度和泡沫夹芯高度及密度对其失效模式和能量吸收特性的影响。研究结果表明,玻璃纤维泡沫夹芯艇体结构迎爆面失效模式为受载区域中心出现沿船宽方向的条状裂缝、十字形裂缝或者边界撕裂;背爆面失效模式为背爆面中心或者边界处出现点状破口;随着迎爆面厚度增加,泡沫夹芯艇体结构总吸能呈下降趋势,整体能量吸收能力降低16.6%。
In order to investigate the explosion resistance of composite unmanned boats, the dynamic response characteristics of fiberglass foam sandwich hull structure under the impact load of underwater explosion are investigated. Using the acoustic solid coupling method to establish a numerical simulation model of the whole boat of foam sandwich hull structure under the impact load of underwater explosion, and comparing with the test results of the real boat to verify its reliability; based on the principle of invariant quality of foam sandwich hull structure, the influence of the thickness of fiberglass panels, the angle of the panel laying, and the height and density of the foam core on the failure mode and the energy absorption characteristics are analyzed by controlling a single variable. The results show that the fiberglass foam sandwich hull structure failure mode on the face of the explosion for the center of the loaded area along the width of the direction of the strip cracks, cross-shaped cracks or boundary tear; back burst surface failure mode for the center of the back burst surface or the boundary of the point-like rupture; with the increase in the thickness of the face of the explosion, the total energy absorption of the foam sandwich hull structure is a downward trend, the overall energy absorption capacity decreased by 16.6%.
2025,47(20): 123-131 收稿日期:2025-1-20
DOI:10.3404/j.issn.1672-7649.2025.20.019
分类号:U668.3
基金项目:国家自然科学基金资助项目(12202329);国家自然科学基金资助项目 (52171318); 武汉市自然科学基金探索计划(晨光计划)资助项目(2024040801020258)
作者简介:刘恒(2000-),男,硕士研究生,研究方向为结构冲击动力学
参考文献:
[1] 胡智焕, 谢威, 刘若楠, 等. 俄乌冲突中无人艇海上作战模式的新突破[J]. 海洋工程装备与技术, 2024, 11(1): 18-22.
HU Z H, XIE W, LIU R N, et al. New breakthrough of unmanned boat maritime combat mode in Russia-Ukraine conflict[J]. Marine Engineering Equipment and Technology, 2024, 11(1): 18-22.
[2] 许斐. 铝合金艇在水下冲击波作用下动态响应的数值研究[D]. 大连: 大连理工大学, 2010.
[3] QIANKUN J, GANGYI D. A finite element analysis of ship sections subjected to underwater explosion[J]. International Journal of Impact Engineering, 2011, 38(7): 558-566.
[4] LI H, ZHU Y, LIU K, et al. Experimental study of the coupled damage characteristics of a large-scale hull girder subjected to an underwater near-field explosion[J]. Thin-Walled Structures, 2024, 196: 111547.
[5] 孙赫, 闫明, 杜志鹏, 等. 舰艇水下爆炸破损分布特性[J]. 爆炸与冲击, 2024, 44(6): 146-160.
SUN H, YAN M, DU Z P, et al. Characteristics of underwater explosion damage distribution of ships[J]. Explosion and Shock, 2024, 44(6): 146-160.
[6] 岳博闻. 近场水下爆炸对复合材料扫雷艇的损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[7] 朱云笛. 水下爆炸载荷作用下无人艇结构动态响应及防护结构研究[D]. 镇江: 江苏科技大学, 2021.
[8] 李永正, 朱云笛, 熊小虎, 等. 复合材料无人艇冲击响应及防护结构型式研究[J]. 江苏科技大学学报(自然科学版), 2021, 35(6): 9-16.
LI Y Z, ZHU Y D, XIONG X H, et al. Research on impact response and protective structure of composite unmanned boat[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2021, 35(6): 9-16.
[9] 李永正, 朱云笛. 复合材料无人艇在近场水下爆炸载荷下的动态响应研究[J]. 舰船科学技术, 2022, 44(14): 1-5.
LI Y Z, ZHU Y D. Dynamic response of composite unmanned boat under near-field underwater explosive load[J]. Ship Science and Technology, 2022, 44(14): 1-5.
[10] DU L, GONG X, YU C, et al. Numerical simulation and response of a composite mine countermeasure ship section subjected to noncontact underwater explosion[C]//International Conference on Marine Equipment & Technology and Sustainable Development. Singapore: Springer Nature Singapore, 2023.
[11] MANNACIO F, DI MARZO F, GAIOTTI M, et al. A design approach to assess effects of non-contact underwater explosions on naval composite vessels[J]. Journal of Marine Science and Application, 2024, 23(2): 316-326.
[12] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 329-334.
[13] LIU H, LIU J, KABOGLU C, et al. Modelling the quasi-static flexural behaviour of composite sandwich structures with uniform-and graded-density foam cores[J]. Engineering Fracture Mechanics, 2022, 259: 108121.