由于船舶航行环境复杂且多变,动态切换功率难以满足负荷状态的需求功率,导致负荷输出与期望值不一致,因此,提出船舶柴油机动力装置负荷切换状态自适应控制方法。构建NARX神经网络负荷预测模型,判断从高负荷状态切换到低负荷状态的需求功率;引入自适应权重混合PSO算法,根据当前和预测的负荷状态,设计自适应预测PID控制器,实现对船舶柴油机动力装置负荷状态变化的响应。实验结果表明,在所研究方法应用下,误差随时间累积的绝对值积分相对较小,可以实现不同负荷状态切换场景下,负荷输出与期望值的紧密一致。
Due to the complex and variable ship navigation environment, the dynamic switching power is difficult to meet the demand power of the load state, which leads to the inconsistency between the load output and the expected value, therefore, the adaptive control method of the load switching state of ship's diesel engine power unit is proposed.The NARX neural network load prediction model is constructed to judge the demand power for switching from a high load state to a low load state; the adaptive weight mixing PSO algorithm is introduced, and the adaptive prediction PID controller is designed according to the current and predicted load states to achieve the response to the change of the ship's diesel engine power unit load state.The experimental results show that under the application of the studied method, the absolute value integral of the error accumulated over time is relatively small, and the close agreement between the load output and the desired value can be achieved under different load state switching scenarios.
2025,47(20): 146-150 收稿日期:2025-4-16
DOI:10.3404/j.issn.1672-7649.2025.20.022
分类号:U664.121;TP25.81
基金项目:2024年度河南省自然科学基金项目(面上科学基金项目)(242300420038)
作者简介:李沙沙(1992-),女,硕士,讲师,研究方向为电力系统、故障诊断、控制算法
参考文献:
[1] 张栋成, 单莹. 耙吸船主机负荷控制的分析[J]. 船电技术, 2023, 43(5): 44-46.
ZHANG D C, SHAN Y. Analysis on load control of main engine of trailing suction dredger[J]. Marine Electric & Electronic Engineering, 2023, 43(5): 44-46.
[2] 黄文聪, 胡滢, 黄津莹, 等. IPT多目标参数优化与切换控制策略研究[J]. 电机与控制学报, 2024, 28(11): 184-194.
HUANG W C, HU Y, HUANG J Y, et al. Research on multi-objective parameter optimization and switchingcontrol strategy of IPT system[J]. Electric Machines and Control, 2024, 28(11): 184-194.
[3] 何勇, 徐鑫, 郭晓彤. 基于状态切换的杂草测绘无人机集群失效控制算法[J]. 控制与决策, 2024, 39(5): 1587-1594.
HE Y, XU X, GUO X T. Failure control algorithm of weed mapping UAV swarm based on stateswitching[J]. Control and Decision, 2024, 39(5): 1587-1594.
[4] 刘慧文, 邢宏伟, 房鑫炎, 等. 基于功率逐级切换控制的内河船舶负荷转供策略[J]. 电测与仪表, 2023, 60(8): 44-50.
LIU H W, XING H W, FANG X Y, et al. Inland river ship-load transfer strategy based on step-by-step power switching control[J]. Electrical Measurement & Instrumentation, 2023, 60(8): 44-50.
[5] 万敏, 杨山山, 黄山山, 等. 全状态约束切换自适应神经网络控制[J]. 空间控制技术与应用, 2023, 49(1): 40-52.
[6] 陈潇凯, 陈丰, 刘向, 等. 基于扰动观测器的主动悬架切换控制算法研究[J]. 汽车工程, 2024, 46(10): 1744-1754.
[7] 寇发荣, 杨旭东, 李盛霖. 复合式空气悬架多模式切换终端滑模控制[J]. 振动与冲击, 2024, 43(11): 83-93.
KOU F R, YANG X D, LI S L. Terminal sliding mode control for multi-mode switching of composite air suspension[J]. Journal of Vibration and Shock, 2024, 43(11): 83-93.
[8] 王刚毅, 张学瑾, 于泽程. 实现船舶电网稳定运行的变频负载控制系统设计[J]. 微型电脑应用, 2024, 40(9): 238-241.
[9] 卢仲辰, 杜常清, 魏树生. 永磁同步电机能量回收柔性切换控制研究[J]. 机床与液压, 2025, 53(1): 58-64.
LU Z C, DU C Q, WEI S S. Research on flexible switching control for regenerative braking of electric vehicles[J]. Research on Flexible Switching Control for Regenerative Braking of Electric Vehicles, 2025, 53(1): 58-64.
[10] 张錾, 李岚, 霍群海, 等. 三端口柔性多状态开关多模式平滑切换控制策略[J]. 现代电力, 2024, 41(4): 775-785.
ZHANG Z, LI L, HUO Q H, et al. A control strategy for smooth switching of three-port flexible multi-state switches[J]. Modern Electric Power, 2024, 41(4): 775-785.
[11] 洪远远, 施伟锋. 基于飞轮储能技术的船舶区域配电系统冲击负荷供能策略[J]. 船舶工程, 2023, 45(1): 103-109.
HONG Y Y, SHI W F. Impulse load energy supply strategy of ship regional distribution power system based on flywheel energy storage technology[J]. Ship Engineering, 2023, 45(1): 103-109.
[12] 洪俊, 刘星璇, 董航. 基于中低分辨率卫星影像中舰船目标识别方法[J]. 计算机仿真, 2024, 41(4): 13-19.
HONG J, LIU X X, DONG H. Ship target recognition method from low and low and medium resolution satellite images[J]. Computer Simulation, 2024, 41(4): 13-19.
[13] 张博, 张萍, 曾凡明. 高强化船用柴油机智能冷却控制策略及算法实验研究[J]. 推进技术, 2023, 44(9): 259-273.
ZHANG B ZHANG P, ZENG F M. Experimental study on intelligent cooling control strategy and algorithm of highly intensified marine diesel engine[J]. Journal of Propulsion Technology, 2023, 44(9): 259-273.
[14] 孟令臣, 闫鹏, 刘鹏博, 等. 面向柔性钳位型尺蠖致动器提速驱动的协同切换控制[J]. 光学精密工程, 2025, 33(1): 96-106.
MENG L C, YAN P, LIU P B, et al. Collaborative switching control for improved-speed driving of flexible clamp-type inchworm actuator[J]. Optics and Precision Engineering, 2025, 33(1): 96-106.
[15] 周寅正, 陈俐. 基于模型预测控制的双机组混合动力船舶能量管理研究[J]. 中国舰船研究, 2024, 19(S1): 74-83.
ZHOU Y C, CHEN L. Study on energy management of dual-diesel generator sets hybrid power ships based on model predictive control[J]. Chinese Journal of Ship Research, 2024, 19(S1): 74-83.
[16] 杨东晓, 曹信一, 申强. 基于PID切换控制的弹道修正引信滚转角控制方法[J]. 北京理工大学学报, 2025, 45(2): 137-143.
YANG D X, CAO X Y, SHEN Q. Trajectory correction fuze roll angle control based on PID switching control missile[J]. Transactions of Beijing Institute of Technology, 2025, 45(2): 137-143.